Physical symmetry and lattice symmetry in the lattice Boltzmann method

被引:200
作者
Cao, NZ
Shen, SY
Jin, S
Martinez, D
机构
[1] LOS ALAMOS NATL LAB,DIV THEORET,LOS ALAMOS,NM 87545
[2] LOS ALAMOS NATL LAB,CNLS,LOS ALAMOS,NM 87545
[3] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
[4] UNIV DELAWARE,DEPT MECH ENGN,NEWARK,DE 19716
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 01期
关键词
D O I
10.1103/PhysRevE.55.R21
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The lattice Boltzmann method (LBM) is regarded as a specific finite difference discretization for the kinetic equation of the discrete velocity distribution function. We argue that for finite sets of discrete velocity models, such as LBM, the physical symmetry is necessary for obtaining the correct macroscopic Navier-Stokes equations. In contrast, the lattice symmetry and the Lagrangian nature of the scheme, which is often used in the lattice gas automaton method and the existing lattice Boltzmann methods and directly associated with the property of particle dynamics, is not necessary for recovering the correct macroscopic dynamics. By relaxing the lattice symmetry constraint and introducing other numerical discretization, one can also obtain correct hydrodynamics. In addition, numerical simulations for applications, such as nonuniform meshes and thermo-hydrodynamics can be easily carried out and numerical stability can be ensured by the Courant-Friedricks-Lewey condition and using the semi-implicit collision scheme.
引用
收藏
页码:R21 / R24
页数:4
相关论文
共 19 条
[1]   LATTICE BOLTZMANN THERMOHYDRODYNAMICS [J].
ALEXANDER, FJ ;
CHEN, S ;
STERLING, JD .
PHYSICAL REVIEW E, 1993, 47 (04) :R2249-R2252
[2]  
Batchelor G. K., 1992, INTRO FLUID DYNAMICS
[3]  
BROADWELL JE, 1964, PHYS FLUIDS, V7, P1013
[4]  
CAFLISCH RE, IN PRESS SIAM J NUM
[5]   RECOVERY OF THE NAVIER-STOKES EQUATIONS USING A LATTICE-GAS BOLTZMANN METHOD [J].
CHEN, HD ;
CHEN, SY ;
MATTHAEUS, WH .
PHYSICAL REVIEW A, 1992, 45 (08) :R5339-R5342
[6]   LATTICE BOLTZMANN MODEL FOR SIMULATION OF MAGNETOHYDRODYNAMICS [J].
CHEN, SY ;
CHEN, HD ;
MARTINEZ, D ;
MATTHAEUS, W .
PHYSICAL REVIEW LETTERS, 1991, 67 (27) :3776-3779
[7]   On boundary conditions in lattice Boltzmann methods [J].
Chen, SY ;
Martinez, D ;
Mei, RW .
PHYSICS OF FLUIDS, 1996, 8 (09) :2527-2536
[8]  
DOOLAN GD, 1991, PHYSICA D, V47
[9]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[10]   THE RELAXATION SCHEMES FOR SYSTEMS OF CONSERVATION-LAWS IN ARBITRARY SPACE DIMENSIONS [J].
JIN, S ;
XIN, ZP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (03) :235-276