EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis

被引:16872
作者
Delorme, A [1 ]
Makeig, S [1 ]
机构
[1] Univ Calif San Diego, Inst Neural Computat, Swartz Ctr Computat Neurosci, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
EEG; ICA; ERP; spectral decomposition; single-trial; Matlab; software;
D O I
10.1016/j.jneumeth.2003.10.009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment(The Math-works, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 21
页数:13
相关论文
共 42 条
  • [1] Amari S, 1996, ADV NEUR IN, V8, P757
  • [2] Complex independent component analysis of frequency-domain electroencephalographic data
    Anemüller, J
    Sejnowski, TJ
    Makeig, S
    [J]. NEURAL NETWORKS, 2003, 16 (09) : 1311 - 1323
  • [3] BAILLET S, 1999, P 5 INT C HUM BRAIN, V9, P246
  • [4] AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION
    BELL, AJ
    SEJNOWSKI, TJ
    [J]. NEURAL COMPUTATION, 1995, 7 (06) : 1129 - 1159
  • [5] BONFERRONI CE, 1950, B UNIONE MATEMATICA, P267
  • [6] FREQUENCY-ANALYSIS OF OLFACTORY SYSTEM EEG IN CAT, RABBIT, AND RAT
    BRESSLER, SL
    FREEMAN, WJ
    [J]. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1980, 50 (1-2): : 19 - 24
  • [7] BLIND BEAMFORMING FOR NON-GAUSSIAN SIGNALS
    CARDOSO, JF
    SOULOUMIAC, A
    [J]. IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (06) : 362 - 370
  • [8] EEG changes accompanying learned regulation of 12-Hz EEG activity
    Delorme, A
    Makeig, S
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003, 11 (02) : 133 - 137
  • [9] From single-trial EEG to brain area dynamics
    Delorme, A
    Makeig, S
    Fabre-Thorpe, M
    Sejnowski, T
    [J]. NEUROCOMPUTING, 2002, 44 : 1057 - 1064
  • [10] Single-trial variability in event-related BOLD signals
    Duann, JR
    Jung, TP
    Kuo, WJ
    Yeh, TC
    Makeig, S
    Hsieh, JC
    Sejnowski, TJ
    [J]. NEUROIMAGE, 2002, 15 (04) : 823 - 835