Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum

被引:275
作者
Özcan, A
Özcan, AS
Tunali, S [1 ]
Akar, T
Kiran, I
机构
[1] Osmangazi Univ, Dept Chem, Fac Arts & Sci, TR-26480 Eskisehir, Turkey
[2] Anadolu Univ, Dept Chem, Fac Sci, TR-26470 Eskisehir, Turkey
关键词
adsorption; copper; isotherm; kinetics; thermodynamics;
D O I
10.1016/j.jhazmat.2005.05.007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Adsorption of copper ions onto Capsicum annuum (red pepper) seeds was investigated with the variation in the parameters of pH, contact time, adsorbent and copper(II) concentrations and temperature. The nature of the possible adsorbent and metal ion interactions was examined by the FTIR technique. The copper(II) adsorption equilibrium was attained within 60 min. Adsorption of copper(II) ions onto C annuum seeds followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Maximum adsorption capacity (q(max)) of copper(II) ions onto red pepper seeds was 4.47 x 10(-4) Mol g(-1) at 50 degrees C. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of copper(II) ions onto C annuum seeds could be described by the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 60 min, but diffusion is not only the rate controlling step. Thermodynamics parameters such as the change of free energy, enthalpy and entropy were also evaluated for the adsorption of copper(H) ions onto C. annuum seeds. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:200 / 208
页数:9
相关论文
共 44 条
[1]   Sorption of cadmium and other heavy metals by pine bark [J].
AlAsheh, S ;
Duvnjak, Z .
JOURNAL OF HAZARDOUS MATERIALS, 1997, 56 (1-2) :35-51
[2]   Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems [J].
Allen, SJ ;
Mckay, G ;
Porter, JF .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 280 (02) :322-333
[3]   Biosorption of copper(II) from aqueous solutions by wheat shell [J].
Basci, N ;
Kocadagistan, E ;
Kocadagistan, B .
DESALINATION, 2004, 164 (02) :135-140
[4]   Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies [J].
Benhammou, A ;
Yaacoubi, A ;
Nibou, L ;
Tanouti, B .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 282 (02) :320-326
[5]   Azadirachta indica leaf powder as an effective biosorbent for dyes:: a case study with aqueous Congo Red solutions [J].
Bhattacharyya, KG ;
Sharma, A .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2004, 71 (03) :217-229
[6]   Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea-industry waste [J].
Çay, S ;
Uyanik, A ;
Özasik, A .
SEPARATION AND PURIFICATION TECHNOLOGY, 2004, 38 (03) :273-280
[7]   Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption [J].
Chen, JP ;
Wu, SN ;
Chong, KH .
CARBON, 2003, 41 (10) :1979-1986
[8]   Heavy metals biosorption on cork biomass: effect of the pre-treatment [J].
Chubar, N ;
Carvalho, JR ;
Correia, MJN .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2004, 238 (1-3) :51-58
[9]   Removal behavior of Babool bark (Acacia nilotica) for submicro concentrations of Hg2+ from aqueous solutions:: a radiotracer study [J].
Dubey, SS ;
Gupta, RK .
SEPARATION AND PURIFICATION TECHNOLOGY, 2005, 41 (01) :21-28
[10]  
Dubinin M., 1947, Proc. Acad. Sci. USSR Phys. Chem. Sect., V55, P327