Temporal shifts from facilitation to competition occur between closely related taxa

被引:153
作者
Valiente-Banuet, Alfonso [1 ]
Verdu, Miguel [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ecol, Dept Ecol Biodiversidad, Mexico City 04510, DF, Mexico
[2] CSIC UV, CIDE, Valencia 46470, Spain
关键词
community organization; competition; facilitation; mutualism; phylogenetic distance; Tehuacan-Cuicatlan Valley; vegetation clumps;
D O I
10.1111/j.1365-2745.2008.01357.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
1. The relative contribution of positive and negative interactions to the organization of ecological communities is an important area, though poorly understood because of the complexity inherent to long-term interactions. For example, positive interactions like plant facilitation turn into negative interactions (competition) along the ontogeny of a plant or in response to temporal fluctuations in the environment. Furthermore, when many plants grow together indirect effects are usually positive and alleviate direct competitive effects. 2. The large number of direct and indirect interactions potentially occurring in natural communities and the temporal scale necessary to account for the ontogenetic shifts in the sign of the interaction makes a fully experimental approach prohibitive. Here, we propose that the phylogenetic distance among co-occurring species is a good proxy to detect competition as a long-term force assembling community composition. Our proposal is based on the observation that closely related species tend to be phenotypically similar and therefore compete for the same niche. 3. We test the relationship between phylogenetic relatedness and the persistence of pairwise (nurse-facilitated) interactions occurring between 102 woody species in three Mexican semi-arid communities in order to quantify the balance between competition and facilitation at the community level. 4. Our results indicate that facilitation turns into competition with increasing taxa relatedness. After validating the association between competition and phylogenetic relatedness, we estimate that 57% of the interactions remain with time while 43% become competitive. [Correction added after publication, 4 March 2008: in the preceding sentence, values corrected from 53% and 47%, respectively.] The preponderance of positive interactions may be explained if facilitation is considered as a mutualism in which both species benefit leading to vegetation clumps in communities. 5. Synthesis. We provide a new perspective on the balance between positive and negative interactions based on a phylogenetically structured network of interactions. This approach promises to contribute to our understanding of long standing issues in plant ecology and to reveal new areas of future research by testing the existence and the nature of the mutualisms as well as their complexity-stability properties on communities as a whole.
引用
收藏
页码:489 / 494
页数:6
相关论文
共 54 条
[1]   POSITIVE INTERACTIONS IN COMMUNITIES [J].
BERTNESS, MD ;
CALLAWAY, R .
TRENDS IN ECOLOGY & EVOLUTION, 1994, 9 (05) :191-193
[2]   Host-specificity of AM fungal population growth rates can generate feedback on plant growth [J].
Bever, JD .
PLANT AND SOIL, 2002, 244 (1-2) :281-290
[3]   Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests [J].
Bever, JD .
NEW PHYTOLOGIST, 2003, 157 (03) :465-473
[4]   Facilitation in plant communities:: the past, the present, and the future [J].
Brooker, Rob W. ;
Maestre, Fernando T. ;
Callaway, Ragan M. ;
Lortie, Christopher L. ;
Cavieres, Lohengrin A. ;
Kunstler, Georges ;
Liancourt, Pierre ;
Tielboerger, Katja ;
Travis, Justin M. J. ;
Anthelme, Fabien ;
Armas, Cristina ;
Coll, Lluis ;
Corcket, Emmanuel ;
Delzon, Sylvain ;
Forey, Estelle ;
Kikvidze, Zaal ;
Olofsson, Johan ;
Pugnaire, Francisco I. ;
Quiroz, Constanza L. ;
Saccone, Patrick ;
Schiffers, Katja ;
Seifan, Merav ;
Touzard, Blaise ;
Michalet, Richard .
JOURNAL OF ECOLOGY, 2008, 96 (01) :18-34
[5]   The balance between positive and negative plant interactions and its relationship to environmental gradients: a model [J].
Brooker, RW ;
Callaghan, TV .
OIKOS, 1998, 81 (01) :196-207
[6]  
CAHILL JF, 2007, PERSPECTIVES PLANT E
[7]  
Callaway R.M., 2007, Positive Interactions and Interdependence in Plant Communities
[8]  
Callaway RM, 1997, ECOLOGY, V78, P1958, DOI 10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO
[9]  
2
[10]   Woody vegetation spatial patterns in a semi-arid savanna of Burkina Faso, West Africa [J].
Couteron, P ;
Kokou, K .
PLANT ECOLOGY, 1997, 132 (02) :211-227