Electron Transfer Dynamics in Dye-Sensitized Solar Cells

被引:578
作者
Listorti, Andrea [1 ]
O'Regan, Brian [1 ]
Durrant, James R. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, Ctr Plast Elect, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
dye-sensitized solar cell; electron transfer; photoelectrochemistry; electron injection; mesoporous; NANOCRYSTALLINE TIO2 FILMS; CHARGE RECOMBINATION KINETICS; TITANIUM-DIOXIDE FILMS; INJECTION DYNAMICS; POLYPYRIDYL COMPLEXES; MESOPOROUS TIO2; HIGH-EFFICIENCY; EXCITED-STATES; COUMARIN DYES; PHOTOELECTROCHEMICAL PROPERTIES;
D O I
10.1021/cm200651e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this review, we address the materials design parameters that control the processes of charge separation, and thereby device efficiency, in dye-sensitized photoelectrochemical solar cells. The review starts with an overview of the structure, energetics and kinetics of dye-sensitized solar cells. It then goes on to consider in more detail the parameters determining the efficiency of the two primary charge separation steps in these devices: electron injection from the dye excited state into the metal oxide electrode, and regeneration of the dye ground state by the redox electrolyte. We consider the kinetic competition between these desired charge separation steps and the undesired loss pathways of excited state decay to ground and electron recombination with dye cations. The review avoids detailed mathematical and spectroscopic discussion, but rather tries to summarize the key conclusions relevant to materials design. A recurring theme of the review is the energy cost of achieving charge separation, and how this limits device performance. A further factor addressed in this review is real as opposed to ideal materials behavior, including, for example, consideration of the implications of empirical observations of an exponential density of acceptor states in the metal oxide, as well as identification of unresolved issues in our current understanding.
引用
收藏
页码:3381 / 3399
页数:19
相关论文
共 210 条
[1]   The limiting role of iodide oxidation in cis-Os(dcb)2(CN)2/TiO2 photoelectrochemical cells [J].
Alebbi, M ;
Bignozzi, CA ;
Heimer, TA ;
Hasselmann, GM ;
Meyer, GJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (39) :7577-7581
[2]   Quantifying Regeneration in Dye-Sensitized Solar Cells [J].
Anderson, Assaf Y. ;
Barnes, Piers R. F. ;
Durrant, James R. ;
O'Regan, Brian C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (05) :2439-2447
[3]   Simultaneous Transient Absorption and Transient Electrical Measurements on Operating Dye-Sensitized Solar Cells: Elucidating the Intermediates in Iodide Oxidation [J].
Anderson, Assaf Y. ;
Barnes, Piers R. F. ;
Durrant, James R. ;
O'Regan, Brian C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (04) :1953-1958
[4]   Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface [J].
Anderson, NA ;
Lian, TQ .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2005, 56 :491-519
[5]   Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films [J].
Anderson, NA ;
Lian, T .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1231-1246
[6]   Bridge-assisted ultrafast interfacial electron transfer to nanocrystalline SnO2 thin films [J].
Anderson, NA ;
Ai, X ;
Chen, DT ;
Mohler, DL ;
Lian, TQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (51) :14231-14239
[7]   Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces [J].
Ardo, Shane ;
Meyer, Gerald J. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :115-164
[8]   Stark Effects after Excited-State Interfacial Electron Transfer at Sensitized TiO2 Nanocrystallites [J].
Ardo, Shane ;
Sun, Yali ;
Staniszewski, Aaron ;
Castellano, Felix N. ;
Meyer, Gerald J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (19) :6696-6709
[9]   Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film [J].
Asbury, JB ;
Anderson, NA ;
Hao, EC ;
Ai, X ;
Lian, TQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30) :7376-7386
[10]   Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films [J].
Asbury, JB ;
Hao, E ;
Wang, YQ ;
Ghosh, HN ;
Lian, TQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (20) :4545-4557