Lys-34, dispensable for integrase catalysis, is required for preintegration complex function and human immunodeficiency virus type 1 replication

被引:28
作者
Lu, R
Vandegraaff, N
Cherepanov, P
Engelman, A
机构
[1] Dana Farber Canc Inst, Dept Canc Immunol & AIDS, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
关键词
D O I
10.1128/JVI.79.19.12584-12591.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Retroviral integrases (INs) function in the context of preintegration complexes (PICs). Two conserved Lys residues in the N-terminal domain of human immunodeficiency virus type 1 (HIV-1) IN were analyzed here for their roles in integration and virus replication. Whereas HIV-1(K46A) grew like the wild type, HIV-1(K34A) was dead. Yet recombinant INK34A protein functioned in in vitro integration assays, and Vpr-INK34A efficiently transcomplemented the infectivity defect of an IN active site mutant virus in cells. HIV-1(K34A) was therefore similar to a number of previously characterized mutant viruses that failed to replicate despite encoding catalytically competent IN. To directly analyze mutant PIC function, a sensitive PCR-based integration assay was developed. HIV-1(K34A) and related mutants failed to support detectable levels (< 1% of wild type) of integration. We therefore concluded that mutations like K34A disrupted higher-order interactions important for PIC function/maturation compared to the innate catalytic activity of IN enzyme.
引用
收藏
页码:12584 / 12591
页数:8
相关论文
共 49 条
[1]   HIV-1 infection requires a functional integrase NLS [J].
Bouyac-Bertoia, M ;
Dvorin, JD ;
Fouchier, RAM ;
Jenkins, Y ;
Meyer, BE ;
Wu, LI ;
Emerman, M ;
Malim, MH .
MOLECULAR CELL, 2001, 7 (05) :1025-1035
[2]   HIV-1 preintegration complexes preferentially integrate into longer target DNA molecules in solution as detected by a sensitive, polymerase chain reaction-based integration assay [J].
Brooun, A ;
Richman, DD ;
Kornbluth, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (50) :46946-46952
[3]   Structure-based mutagenesis of the human immunodeficiency virus type 1 DNA attachment site: Effects on integration and cDNA synthesis [J].
Brown, HEV ;
Chen, HM ;
Engelman, A .
JOURNAL OF VIROLOGY, 1999, 73 (11) :9011-9020
[4]   RETROVIRAL INTEGRATION - STRUCTURE OF THE INITIAL COVALENT PRODUCT AND ITS PRECURSOR, AND A ROLE FOR THE VIRAL IN PROTEIN [J].
BROWN, PO ;
BOWERMAN, B ;
VARMUS, HE ;
BISHOP, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2525-2529
[5]   CORRECT INTEGRATION OF RETROVIRAL DNA INVITRO [J].
BROWN, PO ;
BOWERMAN, B ;
VARMUS, HE ;
BISHOP, JM .
CELL, 1987, 49 (03) :347-356
[6]  
BURKE CJ, 1992, J BIOL CHEM, V267, P9639
[7]   DOMAINS OF THE INTEGRASE PROTEIN OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 RESPONSIBLE FOR POLYNUCLEOTIDYL TRANSFER AND ZINC-BINDING [J].
BUSHMAN, FD ;
ENGELMAN, A ;
PALMER, I ;
WINGFIELD, P ;
CRAIGIE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3428-3432
[9]   Solution structure of the N-terminal zinc binding domain of HIV-1 integrase [J].
Cai, ML ;
Zheng, RL ;
Caffrey, M ;
Craigie, R ;
Clore, GM ;
Gronenborn, AM .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :567-577
[10]   Asymmetric processing of human immunodeficiency virus type 1 cDNA in vivo: Implications for functional end coupling during the chemical steps of DNA transposition [J].
Chen, HM ;
Engelman, A .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (20) :6758-6767