Introducing physical relaxation terms in Bloch equations

被引:36
作者
Bidégaray, B
Bourgeade, A
Reignier, D
机构
[1] CMRS UMR 5640, Lab MIP, F-31062 Toulouse 4, France
[2] CEA, CESTA, F-33114 Le Barp, France
关键词
Bloch equations; relaxation terms; quantum optics;
D O I
10.1006/jcph.2001.6752
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Bloch equation models the evolution of the state of electrons in matter described by a Hamiltonian. To model more physical phenomena we have to introduce phenomenological relaxation terms. The introduction of these terms has to conserve some positiveness: properties. The aim of this paper is to review possible relaxation models and to provide insight into how to discretize them properly in view of numerical computations. (C) 2001 Academic Press.
引用
收藏
页码:603 / 613
页数:11
相关论文
共 10 条
[1]  
BIDEGARAY B, 2000, 5 INT C MATH NUM ASP
[2]  
BIDEGARAY B, MIP0044 U TOUL 3
[3]  
Bloembergen N., 1996, NONLINEAR OPTICS
[4]  
Boyd R. W., 2003, NONLINEAR OPTICS
[5]   Numerical solutions of the Maxwell-Bloch laser equations [J].
Guo, BY ;
Martin, I ;
PerezGarcia, VM ;
Vazquez, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 129 (01) :181-189
[6]   N-LEVEL COHERENCE VECTOR AND HIGHER CONSERVATION-LAWS IN QUANTUM OPTICS AND QUANTUM-MECHANICS [J].
HIOE, FT ;
EBERLY, JH .
PHYSICAL REVIEW LETTERS, 1981, 47 (12) :838-841
[7]  
Loudon R., 2000, QUANTUM THEORY LIGHT
[8]  
MARTIN I, 1995, NONLINEAR SCI SERIES
[9]   FDTD analysis of wave propagation in nonlinear absorbing and gain media [J].
Nagra, AS ;
York, RA .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1998, 46 (03) :334-340
[10]   ULTRAFAST PULSE INTERACTIONS WITH 2-LEVEL ATOMS [J].
ZIOLKOWSKI, RW ;
ARNOLD, JM ;
GOGNY, DM .
PHYSICAL REVIEW A, 1995, 52 (04) :3082-3094