Comparison of Sugar Molecule Decomposition through Glucose and Fructose: A High-Level Quantum Chemical Study

被引:94
作者
Assary, Rajeev S. [1 ,2 ]
Curtiss, Larry A. [1 ,3 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Northwestern Univ, Evanston, IL 60208 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
关键词
CATALYTIC CONVERSION; BIOMASS; ISOMERIZATION; MECHANISM; CONDENSATION; HYDROCARBONS; PREDICTION; DYNAMICS; SUCROSE; ACETONE;
D O I
10.1021/ef201654s
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Efficient chemical conversion of biomass is essential to produce sustainable energy and industrial chemicals. Industrial level conversion of glucose to useful chemicals, such as furfural, hydroxymethylfurfural, and levulinic acid, is a Major step in the biomass conversion but is difficult because of the formation of undesired products and side reactions. To understand the molecular level reaction mechanisms involved in the decomposition of glucose and fructose, we have carried out high-level quantum chemical calculations [Gaussian-4 (G4) theory]. Selective 1,2-dehydration, keto-enol tautomerization, isomerization, retro-aldol condensation, and hydride shifts of glucose and fructose molecules were investigated. Detailed kinetic and thermodynamic analyses indicate that, for acyclic glucose and fructose molecules, the dehydration and isomerization require larger activation barriers compared to the retro-aldol reaction at 298 K in neutral medium. The retro-aldol reaction results in the formation of C2 and C4 species from glucose and C3 species from fructose. The formation of the most stable C3 species, dihydroxyacetone from fructose, is thermodynamically downhill. The 1,3-hydride shift leads to the cleavage of the C-C bond in the acyclic species; however, the enthalpy of activation is significantly higher (50-55 kcal/mol) than that of the retro-aldol reaction (38 kcal/mol) mainly because of the sterically hindered distorted four-membered transition state compared to the hexa-membered transition state in the retro-aldol reaction. Both tautomerization and dehydration are catalyzed by a water molecule in aqueous medium; however, water has little effect on the retro-aldol reaction. Isomerization of glucose to fructose and glyceraldehyde to dihydroxyacetone proceeds through hydride shifts that require an activation enthalpy of about 40 kcal/mol at 298 K in water medium. This investigation maps out accurate energetics of the decomposition of glucose and fructose molecules that is needed to help find more efficient catalyts for the conversion of hexose to useful chemicals.
引用
收藏
页码:1344 / 1352
页数:9
相关论文
共 43 条
[1]   Reactions of D-fructose in water at temperatures up to 400°C and pressures up to 100 MPa [J].
Aida, Taku Michael ;
Tajima, Kiyohiko ;
Watanabe, Masaru ;
Saito, Yuki ;
Kuroda, Kiyoshi ;
Nonaka, Toshiyuki ;
Hattori, Hideo ;
Smith, Richard Lee, Jr. ;
Arai, Kunio .
JOURNAL OF SUPERCRITICAL FLUIDS, 2007, 42 (01) :110-119
[2]  
[Anonymous], J CHEM PHYS
[3]  
[Anonymous], J CHEM PHYS
[4]   Thermochemistry and Reaction Barriers for the Formation of Levoglucosenone from Cellobiose [J].
Assary, Rajeev S. ;
Curtiss, Larry A. .
CHEMCATCHEM, 2012, 4 (02) :200-205
[5]   Theoretical Study of 1,2-Hydride Shift Associated with the Isomerization of Glyceraldehyde to Dihydroxy Acetone by Lewis Acid Active Site Models [J].
Assary, Rajeev S. ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (31) :8754-8760
[6]   Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods [J].
Assary, Rajeev S. ;
Redfern, Paul C. ;
Greeley, Jeffrey ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (15) :4341-4349
[7]   Computational Studies of the Thermochemistry for Conversion of Glucose to Levulinic Acid [J].
Assary, Rajeev S. ;
Redfern, Paul C. ;
Hammond, Jeff R. ;
Greeley, Jeffrey ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (27) :9002-9009
[8]   Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals [J].
Chheda, Juben N. ;
Huber, George W. ;
Dumesic, James A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (38) :7164-7183
[9]   Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts [J].
Climent, Maria J. ;
Corma, Avelino ;
Iborra, Sara .
GREEN CHEMISTRY, 2011, 13 (03) :520-540
[10]   Reply to Comment on "A Universal Approach to Solvation Modeling" [J].
Cramer, Christopher J. ;
Truhlar, Donald G. .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (04) :493-497