Performance of commercial platforms for rapid genotyping of polymorphisms affecting warfarin dose

被引:51
作者
King, Cristi R. [1 ]
Porche-Sorbet, Rhonda M. [2 ]
Gage, Brian F. [1 ]
Ridker, Paul M. [3 ]
Renaud, Yannick [4 ]
Phillips, Michael S. [4 ]
Eby, Charles [1 ,2 ]
机构
[1] Washington Univ, Sch Med, Dept Internal Med, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Pathol, St Louis, MO 63110 USA
[3] Harvard Univ, Brigham & Womens Hosp, Sch Med, Ctr Cardiovasc Dis Prevent, Boston, MA 02115 USA
[4] Pharmacogenom Ctr, Genome Quebec & Montreal Heart Inst, Montreal, PQ, Canada
关键词
warfarin; pharmacogenetics; genotyping; CYP2C9; VKORC1;
D O I
10.1309/1E34UAPR06PJ6HML
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Initiation of warfarin therapy is associated with bleeding owing to its narrow therapeutic window and unpredictable therapeutic dose. Pharmacogenetic-based dosing algorithms can improve accuracy of initial warfarin dosing but require rapid genotyping for cytochrome P-450 2C9 (CYP20) *2 and *3 single nucleotide polymorphisms (SNPs) and a vitamin K epoxide reductase (VKORC1) SNP. We evaluated 4 commercial systems: INFINITI analyzer (AutoGenomics, Carlsbad, CA), Invader assay (Third Wave Technologies, Madison, WI), Tag-It Mutation Detection assay (Luminex Molecular Diagnostics, formerly Tm Bioscience, Toronto, Canada), and pyrosequencing (Biotage, Uppsala, Sweden). We genotyped 112 DNA samples and resolved any discrepancies with bidirectional sequencing. The INFINITI analyzer was 100% accurate for all SNPs and required 8 hours. Invader and Tag-It were 100% accurate for CYP2C9 SNPs, 99% accurate for VKORC 1 -163913673 SNP, and required 3 hours and 8 hours, respectively. Pyrosequencing was 99% accurate for CYP2C9 *2, 100% accurate for CYP2C9 *3, and 100% accurate for VKORC I and required 4 hours. Current commercial platforms provide accurate and rapid genotypes for pharmacogenetic dosing during initiation of warfarin therapy.
引用
收藏
页码:876 / 883
页数:8
相关论文
共 28 条
[1]   Functional impact of CYP2C*5, CYP2C9*6, CYP2C9*8, and CYP2C9*11 in vivo among black Africans [J].
Allabi, AC ;
Gala, JL ;
Horsmans, Y ;
Babaoglu, MO ;
Bozkurt, A ;
Heusterspreute, M ;
Yasar, U .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2004, 76 (02) :113-118
[2]   The pharmacology and management of the vitamin K antagonists [J].
Ansell, J ;
Hirsh, J ;
Poller, L ;
Bussey, H ;
Jacobson, A ;
Hylek, E .
CHEST, 2004, 126 (03) :204S-233S
[3]  
de Arruda Monika, 2002, Expert Rev Mol Diagn, V2, P487
[4]   Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy [J].
Furuya, H ;
FernandezSalguero, P ;
Gregory, W ;
Taber, H ;
Steward, A ;
Gonzalez, FJ ;
Idle, JR .
PHARMACOGENETICS, 1995, 5 (06) :389-392
[5]  
GAGE B, 2008, CLIN PHARM THER 0227
[6]   The genetics of vitamin K antagonists [J].
Gage, BF ;
Eby, CS .
PHARMACOGENOMICS JOURNAL, 2004, 4 (04) :224-225
[7]  
Gage Brian F, 2006, Hematology Am Soc Hematol Educ Program, P467
[8]   Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy [J].
Higashi, MK ;
Veenstra, DL ;
Kondo, LML ;
Wittkowsky, AK ;
Srinouanprachanh, SL ;
Farin, FM ;
Rettie, AE .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2002, 287 (13) :1690-1698
[9]   Prospective, Randomized Pilot Trial of Model-Based Warfarin Dose Initiation using CYP2C9 Genotype and Clinical Data [J].
Hillman, Michael A. ;
Wilke, Russell A. ;
Yale, Steven H. ;
Vidaillet, Humberto J. ;
Caldwell, Michael D. ;
Glurich, Ingrid ;
Berg, Richard L. ;
Schmelzer, John ;
Burmester, James K. .
CLINICAL MEDICINE & RESEARCH, 2005, 3 (03) :137-145
[10]   Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin [J].
Kidd, RS ;
Curry, TB ;
Gallagher, S ;
Edeki, T ;
Blaisdell, J ;
Goldstein, JA .
PHARMACOGENETICS, 2001, 11 (09) :803-808