On long-time evolution in general relativity and geometrization of 3-manifolds

被引:38
作者
Anderson, MT [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200100527
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper introduces relations between the long-time asymptotic behavior of Einstein vacuum space-times and the geometrization of 3-manifolds envisioned by Thurston. The relations are obtained by analysing the asymptotic behavior of a CMC foliation by compact Cauchy surfaces and the induced curve of 3-manifold geometries. The Cheeger-Gromov theory is introduced in this context, and a number of open problems are considered from this viewpoint.
引用
收藏
页码:533 / 567
页数:35
相关论文
共 43 条
[11]   THE CLOSED-UNIVERSE RECOLLAPSE CONJECTURE [J].
BARROW, JD ;
GALLOWAY, GJ ;
TIPLER, FJ .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1986, 223 (04) :835-844
[12]   EXISTENCE OF MAXIMAL SURFACES IN ASYMPTOTICALLY FLAT SPACETIMES [J].
BARTNIK, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :155-175
[14]   ON ASYMPTOTICALLY FLAT SPACE-TIMES WITH G(2)-INVARIANT CAUCHY SURFACES [J].
BERGER, BK ;
CHRUSCIEL, PT ;
MONCRIEF, V .
ANNALS OF PHYSICS, 1995, 237 (02) :322-354
[15]  
Berger M., 1969, J. Differential Geometry, V3, P379
[16]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[17]   DETERMINATION OF CAUCHY SURFACES FROM INTRINSIC-PROPERTIES [J].
BUDIC, R ;
ISENBERG, J ;
LINDBLOM, L ;
YASSKIN, PB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (01) :87-95
[18]  
CHEEGER J, 1986, J DIFFER GEOM, V23, P309
[19]  
CHEEGER J, 1990, J DIFFER GEOM, V32, P269
[20]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419