Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex

被引:180
作者
Zhou, Q
Krebs, JF
Snipas, SJ
Price, A
Alnemri, ES
Tomaselli, KJ
Salvesen, GS
机构
[1] Burnham Inst, Program Apoptosis & Cell Death Res, La Jolla, CA 92037 USA
[2] Duke Univ, Med Ctr, Dept Pathol, Durham, NC 27710 USA
[3] Idun Pharmaceut, La Jolla, CA 92037 USA
[4] Thomas Jefferson Univ, Kimmel Canc Inst, Ctr Apoptosis Res, Philadelphia, PA 19107 USA
关键词
D O I
10.1021/bi980893w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The anti-apoptotic protein p35 from baculovirus is thought to prevent the suicidal response of infected insect cells by inhibiting caspases. Ectopic expression of p35 in a number of transgenic animals or cell lines is also anti-apoptotic, giving rise to the hypothesis that the protein is a general inhibitor of caspases. We have verified this hypothesis by demonstrating that purified recombinant p35 inhibits human caspase-1, -3, -6, -7, -8, and -10 with k(ass) values from 1.2 x 10(3) to 7 x 10(5) (M-1 s(-1)), and with upper limits of Ki values from 0.1 to 9 nM. Inhibition of 12 unrelated serine or cysteine proteases was insignificant, implying that p35 is a potent caspase-specific inhibitor. Mutation of the putative inhibitory loop to favor caspase-1 resulted in a substantial decline in caspase-3 inhibition, but minimal changes in caspase-1 inhibition. The interaction of p35 with caspase-3, as a model of the inhibitory mechanism, revealed classic slow-binding inhibition, with both active-sites of the caspase-3 dimer acting equally and independently. Inhibition resulted from complex formation between the enzyme and inhibitor, which could be visualized under nondenaturing conditions, but was dissociated by SDS to give p35 cleaved at Asp87, the P-1 residue of the inhibitor. Complex formation requires the substrate-binding cleft to be unoccupied. Taken together, these data revealed that p35 is an active-site-directed inhibitor highly adapted to inhibiting caspases.
引用
收藏
页码:10757 / 10765
页数:9
相关论文
共 54 条
[1]   Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus antiapoptotic protein p35 [J].
Ahmad, M ;
Srinivasula, SM ;
Wang, LJ ;
Litwack, G ;
FernandesAlnemri, T ;
Alnemri, ES .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (03) :1421-1424
[2]   L-TRANS-EPOXYSUCCINYL-LEUCYLAMIDO(4-GUANIDINO)BUTANE (E-64) AND ITS ANALOGS AS INHIBITORS OF CYSTEINE PROTEINASES INCLUDING CATHEPSINS B, H AND L [J].
BARRETT, AJ ;
KEMBHAVI, AA ;
BROWN, MA ;
KIRSCHKE, H ;
KNIGHT, CG ;
TAMAI, M ;
HANADA, K .
BIOCHEMICAL JOURNAL, 1982, 201 (01) :189-198
[3]   HUMAN LEUKOCYTE GRANULE ELASTASE - RAPID ISOLATION AND CHARACTERIZATION [J].
BAUGH, RJ ;
TRAVIS, J .
BIOCHEMISTRY, 1976, 15 (04) :836-841
[4]   THE BACULOVIRUS P35 PROTEIN INHIBITS FAS-INDUCED AND TUMOR NECROSIS FACTOR-INDUCED APOPTOSIS [J].
BEIDLER, DR ;
TEWARI, M ;
FRIESEN, PD ;
POIRIER, G ;
DIXIT, VM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (28) :16526-16528
[5]   Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease [J].
Bertin, J ;
Mendrysa, SM ;
LaCount, DJ ;
Gaur, S ;
Krebs, JF ;
Armstrong, RC ;
Tomaselli, KJ ;
Friesen, PD .
JOURNAL OF VIROLOGY, 1996, 70 (09) :6251-6259
[6]   NATURAL PROTEIN PROTEINASE-INHIBITORS AND THEIR INTERACTION WITH PROTEINASES [J].
BODE, W ;
HUBER, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 204 (02) :433-451
[7]   INHIBITION OF ICE FAMILY PROTEASES BY BACULOVIRUS ANTIAPOPTOTIC PROTEIN P35 [J].
BUMP, NJ ;
HACKETT, M ;
HUGUNIN, M ;
SESHAGIRI, S ;
BRADY, K ;
CHEN, P ;
FERENZ, C ;
FRANKLIN, S ;
GHAYUR, T ;
LI, P ;
LICARI, P ;
MANKOVICH, J ;
SHI, LF ;
GREENBERG, AH ;
MILLER, LK ;
WONG, WW .
SCIENCE, 1995, 269 (5232) :1885-1888
[8]   ANALYSIS OF PROTEIN AND PEPTIDE MIXTURES - EVALUATION OF 3 SODIUM DODECYL SULFATE-POLYACRYLAMIDE GEL-ELECTROPHORESIS BUFFER SYSTEMS [J].
BURY, AF .
JOURNAL OF CHROMATOGRAPHY, 1981, 213 (03) :491-500
[9]   PREVENTION OF APOPTOSIS BY A BACULOVIRUS GENE DURING INFECTION OF INSECT CELLS [J].
CLEM, RJ ;
FECHHEIMER, M ;
MILLER, LK .
SCIENCE, 1991, 254 (5036) :1388-1390
[10]   CONTROL OF PROGRAMMED CELL-DEATH BY THE BACULOVIRUS GENES P35 AND IAP [J].
CLEM, RJ ;
MILLER, LK .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (08) :5212-5222