Granule Formation Mechanisms within an Aerobic Wastewater System for Phosphorus Removal

被引:74
作者
Barr, Jeremy J. [1 ,2 ]
Cook, Andrew E. [1 ]
Bond, Phillip L. [1 ,2 ]
机构
[1] Univ Queensland, AWMC, St Lucia, Qld 4072, Australia
[2] Environm Biotechnol Cooperat Res Ctr, Sydney, NSW, Australia
关键词
TARGETED OLIGONUCLEOTIDE PROBES; ACCUMULATING ORGANISMS; SLUDGE; POLYPHOSPHATE; SCALE; IDENTIFICATION; TECHNOLOGY; BACTERIA; CLUSTER; DESIGN;
D O I
10.1128/AEM.00864-10
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Granular sludge is a novel alternative for the treatment of wastewater and offers numerous operational and economic advantages over conventional floccular-sludge systems. The majority of research on granular sludge has focused on optimization of engineering aspects relating to reactor operation with little emphasis on the fundamental microbiology. In this study, we hypothesize two novel mechanisms for granule formation as observed in three laboratory scale sequencing batch reactors operating for biological phosphorus removal and treating two different types of wastewater. During the initial stages of granulation, two distinct granule types (white and yellow) were distinguished within the mixed microbial population. White granules appeared as compact, smooth, dense aggregates dominated by 97.5% "Candidatus Accumulibacter phosphatis," and yellow granules appeared as loose, rough, irregular aggregates with a mixed microbial population of 12.3% "Candidatus Accumulibacter phosphatis" and 57.9% "Candidatus Competibacter phosphatis," among other bacteria. Microscopy showed white granules as homogeneous microbial aggregates and yellow granules as segregated, microcolony-like aggregates, with phylogenetic analysis suggesting that the granule types are likely not a result of strain-associated differences. The microbial community composition and arrangement suggest different formation mechanisms occur for each granule type. White granules are hypothesized to form by outgrowth from a single microcolony into a granule dominated by one bacterial type, while yellow granules are hypothesized to form via multiple microcolony aggregation into a microcolony-segregated granule with a mixed microbial population. Further understanding and application of these mechanisms and the associated microbial ecology may provide conceptual information benefiting start-up procedures for full-scale granular-sludge reactors.
引用
收藏
页码:7588 / 7597
页数:10
相关论文
共 42 条
[1]   FLUORESCENTLY LABELED, RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES IN THE STUDY OF MICROBIAL ECOLOGY [J].
AMANN, RI .
MOLECULAR ECOLOGY, 1995, 4 (05) :543-553
[2]   COMBINATION OF 16S RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITH FLOW-CYTOMETRY FOR ANALYZING MIXED MICROBIAL-POPULATIONS [J].
AMANN, RI ;
BINDER, BJ ;
OLSON, RJ ;
CHISHOLM, SW ;
DEVEREUX, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1919-1925
[3]   Aerobic granulation with industrial wastewater in sequencing batch reactors [J].
Arrojo, B ;
Mosquera-Corral, A ;
Garrido, JM ;
Méndez, R .
WATER RESEARCH, 2004, 38 (14-15) :3389-3399
[4]   Aerobic granulation in a sequencing batch reactor [J].
Beun, JJ ;
Hendriks, A ;
Van Loosdrecht, MCM ;
Morgenroth, E ;
Wilderer, PA ;
Heijnen, JJ .
WATER RESEARCH, 1999, 33 (10) :2283-2290
[5]   Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation [J].
Crocetti, GR ;
Hugenholtz, P ;
Bond, PL ;
Schuler, A ;
Keller, J ;
Jenkins, D ;
Blackall, LL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (03) :1175-1182
[6]   Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes [J].
Crocetti, GR ;
Banfield, JF ;
Keller, J ;
Bond, PL ;
Blackall, LL .
MICROBIOLOGY-SGM, 2002, 148 :3353-3364
[7]   daime, a novel image analysis program for microbial ecology and biofilm research [J].
Daims, H ;
Lücker, S ;
Wagner, M .
ENVIRONMENTAL MICROBIOLOGY, 2006, 8 (02) :200-213
[8]   The domain-specific probe EUB338 is insufficient for the detection of all Bacteria:: Development and evaluation of a more comprehensive probe set [J].
Daims, H ;
Brühl, A ;
Amann, R ;
Schleifer, KH ;
Wagner, M .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1999, 22 (03) :434-444
[9]  
de Bruin LMM, 2004, WATER SCI TECHNOL, V49, P1
[10]   Aerobic granular sludge - state of the art [J].
de Kreuk, M. K. ;
Kishida, N. ;
van Loosdrecht, M. C. M. .
WATER SCIENCE AND TECHNOLOGY, 2007, 55 (8-9) :75-81