Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome

被引:172
作者
Xi, Hualin
Shulha, Hennady P.
Lin, Jane M.
Vales, Teresa R.
Fu, Yutao
Bodine, David M.
Mckay, Ronald D. G.
Chenoweth, Josh G.
Tesar, Paul J.
Furey, Terrence S.
Ren, Bing
Weng, Zhiping [1 ]
Crawford, Gregory E.
机构
[1] Boston Univ, Bioinformat Program, Boston, MA 02215 USA
[2] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[3] Duke Univ, Inst Genome Sci & Policy, Durham, NC USA
[4] NHGRI, Genet & Mol Biol Branch, Hematopoiesis Sect, Bethesda, MD 20892 USA
[5] NINDS, NIH, Bethesda, MD 20892 USA
[6] Univ Calif San Diego, Ludwig Inst Canc Res, La Jolla, CA 92093 USA
来源
PLOS GENETICS | 2007年 / 3卷 / 08期
关键词
D O I
10.1371/journal.pgen.0030136
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The identification of regulatory elements from different cell types is necessary for understanding the mechanisms controlling cell type-specific and housekeeping gene expression. Mapping DNasel hypersensitive ( HS) sites is an accurate method for identifying the location of functional regulatory elements. We used a high throughput method called DNase-chip to identify 3,904 DNasel HS sites from six cell types across 1% of the human genome. A significant number ( 22%) of DNasel HS sites from each cell type are ubiquitously present among all cell types studied. Surprisingly, nearly all of these ubiquitous DNasel HS sites correspond to either promoters or insulator elements: 86% of them are located near annotated transcription start sites and 10% are bound by CTCF, a protein with known enhancer-blocking insulator activity. We also identified a large number of DNasel HS sites that are cell type specific ( only present in one cell type); these regions are enriched for enhancer elements and correlate with cell type-specific gene expression as well as cell type-specific histone modifications. Finally, we found that approximately 8% of the genome overlaps a DNasel HS site in at least one the six cell lines studied, indicating that a significant percentage of the genome is potentially functional.
引用
收藏
页码:1377 / 1388
页数:12
相关论文
共 44 条
  • [1] Combining evidence using p-values: application to sequence homology searches
    Bailey, TL
    Gribskov, M
    [J]. BIOINFORMATICS, 1998, 14 (01) : 48 - 54
  • [2] Bailey TL., 1994, P 2 INT C INT SYST M, V2, P28
  • [3] The protein CTCF is required for the enhancer blocking activity of vertebrate insulators
    Bell, AC
    West, AG
    Felsenfeld, G
    [J]. CELL, 1999, 98 (03) : 387 - 396
  • [4] Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene
    Bell, AC
    Felsenfeld, G
    [J]. NATURE, 2000, 405 (6785) : 482 - 485
  • [5] Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    Birney, Ewan
    Stamatoyannopoulos, John A.
    Dutta, Anindya
    Guigo, Roderic
    Gingeras, Thomas R.
    Margulies, Elliott H.
    Weng, Zhiping
    Snyder, Michael
    Dermitzakis, Emmanouil T.
    Stamatoyannopoulos, John A.
    Thurman, Robert E.
    Kuehn, Michael S.
    Taylor, Christopher M.
    Neph, Shane
    Koch, Christoph M.
    Asthana, Saurabh
    Malhotra, Ankit
    Adzhubei, Ivan
    Greenbaum, Jason A.
    Andrews, Robert M.
    Flicek, Paul
    Boyle, Patrick J.
    Cao, Hua
    Carter, Nigel P.
    Clelland, Gayle K.
    Davis, Sean
    Day, Nathan
    Dhami, Pawandeep
    Dillon, Shane C.
    Dorschner, Michael O.
    Fiegler, Heike
    Giresi, Paul G.
    Goldy, Jeff
    Hawrylycz, Michael
    Haydock, Andrew
    Humbert, Richard
    James, Keith D.
    Johnson, Brett E.
    Johnson, Ericka M.
    Frum, Tristan T.
    Rosenzweig, Elizabeth R.
    Karnani, Neerja
    Lee, Kirsten
    Lefebvre, Gregory C.
    Navas, Patrick A.
    Neri, Fidencio
    Parker, Stephen C. J.
    Sabo, Peter J.
    Sandstrom, Richard
    Shafer, Anthony
    [J]. NATURE, 2007, 447 (7146) : 799 - 816
  • [6] Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis:: Sox genes and BMP signaling
    Chimal-Monroy, J
    Rodriguez-Leon, J
    Montero, JA
    Gañan, Y
    Macias, D
    Merino, R
    Hurle, JM
    [J]. DEVELOPMENTAL BIOLOGY, 2003, 257 (02) : 292 - 301
  • [7] Characterization of the chicken beta-globin insulator
    Chung, JH
    Bell, AC
    Felsenfeld, G
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (02) : 575 - 580
  • [8] Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS)
    Crawford, GE
    Holt, IE
    Whittle, J
    Webb, BD
    Tai, D
    Davis, S
    Margulies, EH
    Chen, YD
    Bernat, JA
    Ginsburg, D
    Zhou, DX
    Luo, SJ
    Vasicek, TJ
    Daly, MJ
    Wolfsberg, TG
    Collins, FS
    [J]. GENOME RESEARCH, 2006, 16 (01) : 123 - 131
  • [9] DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays
    Crawford, Gregory E.
    Davis, Sean
    Scacheri, Peter C.
    Renaud, Gabriel
    Halawi, Mohamad J.
    Erdos, Michael R.
    Green, Roland
    Meltzer, Paul S.
    Wolfsberg, Tyra G.
    Collins, Francis S.
    [J]. NATURE METHODS, 2006, 3 (07) : 503 - 509
  • [10] Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements
    Dostie, Josee
    Richmond, Todd A.
    Arnaout, Ramy A.
    Selzer, Rebecca R.
    Lee, William L.
    Honan, Tracey A.
    Rubio, Eric D.
    Krumm, Anton
    Lamb, Justin
    Nusbaum, Chad
    Green, Roland D.
    Dekker, Job
    [J]. GENOME RESEARCH, 2006, 16 (10) : 1299 - 1309