Sleep and wakefulness modulate gene expression in Drosophila

被引:108
作者
Cirelli, C [1 ]
LaVaute, TM [1 ]
Tononi, G [1 ]
机构
[1] Univ Wisconsin, Dept Psychiat, Madison, WI 53719 USA
关键词
brain; fruit fly; microarray; sleep deprivation;
D O I
10.1111/j.1471-4159.2005.03291.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the mammalian brain, sleep and wakefulness are associated with widespread changes in gene expression. Sleep in fruit flies shares many features with mammalian sleep, but it is currently unknown to what extent behavioral states affect gene expression in Drosophila. To find out, we performed a comprehensive microarray analysis of gene expression in spontaneously awake, sleep-deprived and sleeping flies. Fly heads were collected at 4 am, after 8 h of spontaneous sleep or sleep deprivation, and at 4 pm, after 8 h of spontaneous wakefulness. As in rats, we found that behavioral state and time of day affect Drosophila gene expression to a comparable extent. As in rats, transcripts with higher expression in wakefulness and in sleep belong to different functional categories, and in several cases these groups overlap with those previously identified in rats. Wakefulness-related genes code for transcription factors and for proteins involved in the stress response, immune response, glutamatergic transmission, and carbohydrate metabolism. Sleep-related transcripts include the glial gene anachronism and several genes involved in lipid metabolism. Finally, the expression of many wakefulness-related and sleep-related Drosophila transcripts is also modulated by the time of day, suggesting an interaction at the molecular level between circadian and homeostatic mechanism of sleep regulation.
引用
收藏
页码:1411 / 1419
页数:9
相关论文
共 35 条
[1]  
Antle MC, 2000, J NEUROSCI, V20, P9326
[2]   The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway [J].
Baker, KD ;
Shewchuk, LM ;
Kozlova, T ;
Makishima, M ;
Hassell, A ;
Wisely, B ;
Caravella, JA ;
Lambert, MH ;
Reinking, JL ;
Krause, H ;
Thummel, CS ;
Willson, TM ;
Mangelsdorf, DJ .
CELL, 2003, 113 (06) :731-742
[3]   Neuroendocrine control of a sexually dimorphic behavior by a few neurons of the pars intercerebralis in Drosophila [J].
Belgacem, YH ;
Martin, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (23) :15154-15158
[4]   Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior [J].
Ceriani, MF ;
Hogenesch, JB ;
Yanovsky, M ;
Panda, S ;
Straume, M ;
Kay, SA .
JOURNAL OF NEUROSCIENCE, 2002, 22 (21) :9305-9319
[5]   Reduced sleep in Drosophila shaker mutants [J].
Cirelli, C ;
Bushey, D ;
Hill, S ;
Huber, R ;
Kreber, R ;
Ganetzky, B ;
Tononi, G .
NATURE, 2005, 434 (7037) :1087-1092
[6]   Extensive and divergent effects of sleep and wakefulness on brain gene expression [J].
Cirelli, C ;
Gutierrez, CM ;
Tononi, G .
NEURON, 2004, 41 (01) :35-43
[7]   Circadian regulation of gene expression systems in the Drosophila head [J].
Claridge-Chang, A ;
Wijnen, H ;
Naef, F ;
Boothroyd, C ;
Rajewsky, N ;
Young, MW .
NEURON, 2001, 32 (04) :657-671
[8]   Do thyroid hormones function in insects? [J].
Davey, KG .
INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2000, 30 (8-9) :877-884
[9]   Sleep states alter activity of suprachiasmatic nucleus neurons [J].
Deboer, T ;
Vansteensel, MJ ;
Détári, L ;
Meijer, JH .
NATURE NEUROSCIENCE, 2003, 6 (10) :1086-1090
[10]   THE DROSOPHILA ANACHRONISM LOCUS - A GLYCOPROTEIN SECRETED BY GLIA INHIBITS NEUROBLAST PROLIFERATION [J].
EBENS, AJ ;
GARREN, H ;
CHEYETTE, BNR ;
ZIPURSKY, SL .
CELL, 1993, 74 (01) :15-27