Docking and fusion in neurosecretion

被引:71
作者
Robinson, LJ [1 ]
Martin, TFJ [1 ]
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
关键词
D O I
10.1016/S0955-0674(98)80063-X
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A central issue in neurobiology concerns the mechanisms of membrane fusion that are essential for the rapid regulated delivery of neurotransmitters into the synapse. While many gene products are required for neurosecretion, recent research has focused on defining the core exocytotic machinery that is responsible for the docking of synaptic vesicles (SVs) and their fusion with the plasma membrane. N-ethylmaleimide-sensitive factor (NSF), soluble NSF attachment protein (SNAP) and SNAP receptor (SNARE) proteins are essential for fusion but may not be critical for SV docking. Current evidence suggests that NSF functions during an ATP-dependent step after docking but before fusion. NSF may function to liberate SNARE proteins from complexes so that the proteins on apposed membranes align in a parallel fashion to bring SVs into close contact with the plasma membrane for fusion.
引用
收藏
页码:483 / 492
页数:10
相关论文
共 73 条
[1]   N-ethylmaleimide-sensitive factor acts at a profusion ATP-dependent step in Ca2+-activated exocytosis [J].
Banerjee, A ;
Barry, VA ;
DasGupta, BR ;
Martin, TFJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20223-20226
[2]   Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis [J].
Barnard, RJO ;
Morgan, A ;
Burgoyne, RD .
JOURNAL OF CELL BIOLOGY, 1997, 139 (04) :875-883
[3]   Ca2+ and the regulation of neurotransmitter secretion [J].
Bennett, MK .
CURRENT OPINION IN NEUROBIOLOGY, 1997, 7 (03) :316-322
[4]  
BERWIN B, 1998, IN PRESS NEURON
[5]   SEC8P AND SEC15P ARE COMPONENTS OF A PLASMA MEMBRANE-ASSOCIATED 19.5S PARTICLE THAT MAY FUNCTION DOWNSTREAM OF SEC4P TO CONTROL EXOCYTOSIS [J].
BOWSER, R ;
MULLER, H ;
GOVINDAN, B ;
NOVICK, P .
JOURNAL OF CELL BIOLOGY, 1992, 118 (05) :1041-1056
[6]   SYNTAXIN AND SYNAPTOBREVIN FUNCTION DOWNSTREAM OF VESICLE DOCKING IN DROSOPHILA [J].
BROADIE, K ;
PROKOP, A ;
BELLEN, HJ ;
OKANE, CJ ;
SCHULZE, KL ;
SWEENEY, ST .
NEURON, 1995, 15 (03) :663-673
[7]   NSF and SNAP are present on adrenal chromaffin granules [J].
Burgoyne, RD ;
Williams, G .
FEBS LETTERS, 1997, 414 (02) :349-352
[8]   Neuronal peptide release is limited by secretory granule mobility [J].
Burke, NV ;
Han, WP ;
Li, DQ ;
Takimoto, K ;
Watkins, SC ;
Levitan, ES .
NEURON, 1997, 19 (05) :1095-1102
[9]  
Calakos N, 1996, PHYSIOL REV, V76, P1
[10]   Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins [J].
Cao, XC ;
Ballew, N ;
Barlowe, C .
EMBO JOURNAL, 1998, 17 (08) :2156-2165