Optimization of Laguerre-Gauss truncated series

被引:24
作者
Borghi, R
Gori, F
Santarsiero, M
机构
[1] Dipartimento di Fisica, Univ. Studi di Roma La Sapienza, 00185 Rome, P.le A. Moro
关键词
D O I
10.1016/0030-4018(96)00015-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When a circularly symmetric function with finite support is expanded into a series oi Laguerre-Gauss functions the pertaining spot-size can be chosen at will. However, if the series is truncated the choice of the spot-size affects the truncation error. We suggest a simple rule for minimizing the error. The application to the circ function is discussed in some detail.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 17 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]  
BALANIS CA, 1982, ANTENNA THEORY ANAL, pCH11
[3]  
BARAKAT R, 1980, COMPUTER OPTICAL RES, pCH2
[4]   OPTIMAL SCALE FACTORS FOR GAUSSIAN FIELD EXPANSIONS FOR A CIRCULAR APERTURE [J].
ELKINS, RE ;
BOGUSH, AJ ;
JORDON, RH .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1987, 35 (12) :1476-1481
[5]   DIFFRACTION BY A CIRCULAR APERTURE AS A MODEL FOR 3-DIMENSIONAL OPTICAL MICROSCOPY [J].
GIBSON, SF ;
LANNI, F .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1989, 6 (09) :1357-1367
[6]   FLATTENED GAUSSIAN BEAMS [J].
GORI, F .
OPTICS COMMUNICATIONS, 1994, 107 (5-6) :335-341
[7]  
GORI F, 1987, INVERSE PROBL, P269
[9]  
Mandel L, 1995, OPTICAL COHERENCE QU
[10]  
MORSE PM, 1953, METHODS THEORETICAL, pCH1