Stability of power-law discs - I. The Fredholm integral equation

被引:33
作者
Evans, NW [1 ]
Read, JCA [1 ]
机构
[1] Univ Oxford, Dept Phys, Oxford OX1 3NP, England
关键词
instabilities; methods : analytical; methods : numerical; celestial mechanics; stellar dynamics; galaxies : kinematics and dynamics; galaxies : spiral;
D O I
10.1046/j.1365-8711.1998.01863.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. While maintaining the scale free equilibrium force law, the power-law discs can be transformed into cut-out discs by preventing stars close to the origin (and sometimes also at large radii) from participating in any disturbance. This paper derives the homogeneous Fredholm integral equation for the in-plane normal modes in the self-consistent and the cut-out power-law discs. This is done by linearizing the collisionless Boltzmann equation to find the response density corresponding to any imposed density and potential. The normal modes - that is, the self-consistent modes of oscillation - are found by requiring the imposed density to equal the response density. In practice, this scheme is implemented in Fourier space, by decomposing both imposed and response densities in logarithmic spirals. The Fredholm integral equation then relates the transform of the imposed density to the transform of the response density. Numerical strategies to solve the integral equation and to isolate the growth rates and the pattern speeds of the normal modes are discussed.
引用
收藏
页码:83 / 105
页数:23
相关论文
共 34 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]  
[Anonymous], 1985, COMPUTATIONAL METHOD
[3]  
Binney J., 2008, GALACTIC DYNAMICS
[4]  
BISNOVATYIKOGAN E, 1976, SOV ASTRON LETT, V1, P177
[5]   DECLINING ROTATION CURVES - THE END OF A CONSPIRACY [J].
CASERTANO, S ;
VANGORKOM, JH .
ASTRONOMICAL JOURNAL, 1991, 101 (04) :1231-1241
[6]  
COURANT R, 1953, METHODS MATH PHYSICS
[7]   THE OPTIMAL N-BODY METHOD FOR STABILITY STUDIES OF GALAXIES [J].
EARN, DJD ;
SELLWOOD, JA .
ASTROPHYSICAL JOURNAL, 1995, 451 (02) :533-541
[8]  
EARN DJD, 1993, THESIS CAMBRIDGE U
[9]   THE POWER-LAW GALAXIES [J].
EVANS, NW .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1994, 267 (02) :333-360
[10]   SIMPLE DISKS WITH FLAT ROTATION CURVES [J].
EVANS, NW ;
COLLETT, JL .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1993, 264 (02) :353-374