Ongoing transients in carbonate compensation

被引:29
作者
Boudreau, Bernard P. [1 ]
Middelburg, Jack J. [3 ,4 ]
Hofmann, Andreas F. [2 ,3 ]
Meysman, Filip J. R. [3 ,5 ]
机构
[1] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4J1, Canada
[2] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA
[3] Netherlands Inst Ecol, Yerseke, Netherlands
[4] Univ Utrecht, Fac Geosci, Utrecht, Netherlands
[5] Vrije Univ Brussel, Dept Analyt & Environm Chem, Brussels, Belgium
基金
加拿大自然科学与工程研究理事会;
关键词
HIGH CO2 OCEAN; ATMOSPHERIC CO2; HIGH-LATITUDE; MODEL; CYCLE; DIOXIDE; CACO3; PRESERVATION; SENSITIVITY; PUMP;
D O I
10.1029/2009GB003654
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Uptake of anthropogenic CO2 is acidifying the oceans. Over the next 2000 years, this will modify the dissolution and preservation of sedimentary carbonate. By coupling new formulas for the positions of the calcite saturation horizon, z(sat), the compensation depth, z(cc), and the snowline, z(snow), to a biogeochemical model of the oceanic carbonate system, we evaluate how these horizons will change with ongoing ocean acidification. Our model is an extended Havardton-Bear-type box model, which includes novel kinetic descriptions for carbonate dissolution above, between, and below these critical depths. In the preindustrial ocean, z(sat) and z(cc) are at 3939 and 4750 m, respectively. When forced with the IS92a CO2 emission scenario, the model forecasts (1) that z(sat) will rise rapidly ("runaway" conditions) so that all deep water becomes undersaturated, (2) that z(cc) will also rise and over 1000 years will pass before it will be stabilized by the dissolution of previously deposited CaCO3, and (3) that z(snow) will respond slowly to acidification, rising by similar to 1150 m during a 2000 year timeframe. A further simplified model that equates the compensation and saturation depths produces quantitatively different results. Finally, additional feedbacks due to acidification on calcification and increased atmospheric CO2 on organic matter productivity strongly affect the positions of the compensation horizons and their dynamics.
引用
收藏
页数:13
相关论文
共 40 条
[1]  
[Anonymous], 2009, Etopo1 arcminute global relief model: Procedures, data sources and analysis
[2]   Dynamics of fossil fuel CO2 neutralization by marine CaCO3 [J].
Archer, D ;
Kheshgi, H ;
Maier-Reimer, E .
GLOBAL BIOGEOCHEMICAL CYCLES, 1998, 12 (02) :259-276
[3]   Fate of fossil fuel CO2 in geologic time -: art. no. C09S05 [J].
Archer, D .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2005, 110 (C9) :1-6
[4]   EFFECT OF DEEP-SEA SEDIMENTARY CALCITE PRESERVATION ON ATMOSPHERIC CO2 CONCENTRATION [J].
ARCHER, D ;
MAIERREIMER, E .
NATURE, 1994, 367 (6460) :260-263
[5]   Atmospheric Lifetime of Fossil Fuel Carbon Dioxide [J].
Archer, David ;
Eby, Michael ;
Brovkin, Victor ;
Ridgwell, Andy ;
Cao, Long ;
Mikolajewicz, Uwe ;
Caldeira, Ken ;
Matsumoto, Katsumi ;
Munhoven, Guy ;
Montenegro, Alvaro ;
Tokos, Kathy .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2009, 37 :117-134
[6]   Atmospheric pCO2 sensitivity to the biological pump in the ocean [J].
Archer, DE ;
Eshel, G ;
Winguth, A ;
Broecker, W ;
Pierrehumbert, R ;
Tobis, M ;
Jacob, R .
GLOBAL BIOGEOCHEMICAL CYCLES, 2000, 14 (04) :1219-1230
[7]   GEOCARB III:: A revised model of atmospheric CO2 over phanerozoic time [J].
Berner, RA ;
Kothavala, Z .
AMERICAN JOURNAL OF SCIENCE, 2001, 301 (02) :182-204
[8]   Carbonate compensation dynamics [J].
Boudreau, Bernard P. ;
Middelburg, Jack J. ;
Meysman, Filip J. R. .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[9]  
Boudreau BP., 2001, The benthic boundary layer: transport processes and biogeochemistry, P104
[10]   How strong is the Harvardton-Bear constraint? [J].
Broecker, W ;
Lynch-Stieglitz, J ;
Archer, D ;
Hofmann, M ;
Maier-Reimer, E ;
Marchal, O ;
Stocker, T ;
Gruber, N .
GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13 (04) :817-820