Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability

被引:108
作者
Summers, D [1 ]
机构
[1] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England
基金
英国惠康基金;
关键词
D O I
10.1046/j.1365-2958.1998.01012.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multicopy plasmids of Escherichia coli are distributed randomly at cell division and, as long as copy number remains high, plasmid-free cells arise only rarely. Copy number variation is minimized by plasmid-encoded control circuits, and the limited data available suggest that deviations are corrected efficiently under most circumstances. However, plasmid multimers confuse control circuits, leading to copy number depression, To make matters worse, multimers out-replicate monomers and accumulate clonally within the culture, creating a subpopulation of cells with a significantly increased rate of plasmid loss. Multimers of natural multicopy plasmids, such as ColE1, are resolved to monomers by a site-specific recombination system (Xer-cer) whose activity is limited to intramolecular recombination. Recombination requires the heterodimeric XerCD recombinase plus two accessory proteins (ArgR and PepA), which activate recombination and prevent intermolecular events. Evidence is accumulating that Xer-cer recombination is relatively slow, and there is a risk that cells might divide before multimer resolution is complete. The Red transcript encoded within cer may solve this problem by preventing the division of multimer-containing cells. Working in concert, the triumvirate of copy number control, multimer resolution and cell division control achieve an extremely high fidelity of plasmid maintenance.
引用
收藏
页码:1137 / 1145
页数:9
相关论文
共 49 条
[1]   EVIDENCE FOR A 2ND CONSERVED ARGININE RESIDUE IN THE INTEGRASE FAMILY OF RECOMBINATION PROTEINS [J].
ABREMSKI, KE ;
HOESS, RH .
PROTEIN ENGINEERING, 1992, 5 (01) :87-91
[2]   Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination [J].
Alen, C ;
Sherratt, DJ ;
Colloms, SD .
EMBO JOURNAL, 1997, 16 (17) :5188-5197
[3]   THE INTEGRASE FAMILY OF SITE-SPECIFIC RECOMBINASES - REGIONAL SIMILARITIES AND GLOBAL DIVERSITY [J].
ARGOS, P ;
LANDY, A ;
ABREMSKI, K ;
EGAN, JB ;
HAGGARDLJUNGQUIST, E ;
HOESS, RH ;
KAHN, ML ;
KALIONIS, B ;
NARAYANA, SVL ;
PIERSON, LS ;
STERNBERG, N ;
LEONG, JM .
EMBO JOURNAL, 1986, 5 (02) :433-440
[4]   DNA sequence of recombinase-binding sites can determine Xer site-specific recombination outcome [J].
Blake, JAR ;
Ganguly, N ;
Sherratt, DJ .
MOLECULAR MICROBIOLOGY, 1997, 23 (02) :387-398
[5]   2 RELATED RECOMBINASES ARE REQUIRED FOR SITE-SPECIFIC RECOMBINATION AT DIF AND CER IN ESCHERICHIA-COLI K12 [J].
BLAKELY, G ;
MAY, G ;
MCCULLOCH, R ;
ARCISZEWSKA, LK ;
BURKE, M ;
LOVETT, ST ;
SHERRATT, DJ .
CELL, 1993, 75 (02) :351-361
[6]   QUANTITATIVE MODEL OF COLE1 PLASMID COPY NUMBER CONTROL [J].
BRENDEL, V ;
PERELSON, AS .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 229 (04) :860-872
[7]   QUANTITATION OF COLE1-ENCODED REPLICATION ELEMENTS [J].
BRENNER, M ;
TOMIZAWA, JI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (02) :405-409
[8]   MUTANT ESCHERICHIA-COLI ARGININE REPRESSOR PROTEINS THAT FAIL TO BIND L-ARGININE, YET RETAIN THE ABILITY TO BIND THEIR NORMAL DNA-BINDING SITES [J].
BURKE, M ;
MERICAN, AF ;
SHERRATT, DJ .
MOLECULAR MICROBIOLOGY, 1994, 13 (04) :609-618
[9]   STRUCTURE DETERMINATION AND REFINEMENT OF BOVINE LENS LEUCINE AMINOPEPTIDASE AND ITS COMPLEX WITH BESTATIN [J].
BURLEY, SK ;
DAVID, PR ;
SWEET, RM ;
TAYLOR, A ;
LIPSCOMB, WN .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (01) :113-140
[10]   CARP, INVOLVED IN PYRIMIDINE REGULATION OF THE ESCHERICHIA-COLI CARBAMOYLPHOSPHATE SYNTHETASE OPERON ENCODES A SEQUENCE-SPECIFIC DNA-BINDING PROTEIN IDENTICAL TO XERB AND PEPA, ALSO REQUIRED FOR RESOLUTION OF COLEI MULTIMERS [J].
CHARLIER, D ;
HASSANZADEH, G ;
KHOLTI, A ;
GIGOT, D ;
PIERARD, A ;
GLANSDORFF, N .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 250 (04) :392-406