A hybrid Markov chain for the Bayesian analysis of the multinomial probit model

被引:41
作者
Nobile, A [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
基金
美国国家科学基金会;
关键词
multinomial probit model; Gibbs sampling; Metropolis algorithm; Bayesian analysis;
D O I
10.1023/A:1008905311214
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Bayesian inference for the multinomial probit model, using the Gibbs sampler with data augmentation, has been recently considered by some authors. The present paper introduces a modification of the sampling technique, by defining a hybrid Markov chain in which, after each Gibbs sampling cycle, a Metropolis step is carried out along a direction of constant likelihood. Examples with simulated data sets motivate and illustrate the new technique. A proof of the ergodicity of the hybrid Markov chain is also given.
引用
收藏
页码:229 / 242
页数:14
相关论文
共 22 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]  
Anderson S.P., 1992, DISCRETE CHOICE THEO
[3]  
[Anonymous], 1984, Handbook of Econometrics, DOI DOI 10.1016/S1573-4412(84)02016-X
[4]  
Ben-Akiva M., 1985, Discrete choice analysis: theory and application to travel demand
[5]   ESTIMABILITY IN THE MULTINOMIAL PROBIT MODEL [J].
BUNCH, DS .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1991, 25 (01) :1-12
[6]   PARAMETER ESTIMABILITY IN THE MULTINOMIAL PROBIT MODEL [J].
DANSIE, BR .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1985, 19 (06) :526-528
[7]  
DeGroot M., 1970, OPTIMAL STAT DECISIO
[8]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[9]   ALTERNATIVE COMPUTATIONAL APPROACHES TO INFERENCE IN THE MULTINOMIAL PROBIT MODEL [J].
GEWEKE, J ;
KEANE, M ;
RUNKLE, D .
REVIEW OF ECONOMICS AND STATISTICS, 1994, 76 (04) :609-632
[10]  
GEWEKE J, 1991, COMPUTING SCIENCE AND STATISTICS, P571