The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small

被引:140
作者
Nei, M
Kumar, S
Takahashi, K
机构
[1] Penn State Univ, Inst Mol Evolut Genet, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
关键词
D O I
10.1073/pnas.95.21.12390
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the maximum parsimony (h-IP) and minimum evolution (ME) methods of phylogenetic inference, evolutionary trees are constructed by searching for the topology that shows the minimum number of mutational changes required (M) and the smallest sum of branch lengths (S), respectively, whereas in the maximum likelihood (ML) method the topology showing the highest maximum likelihood (A) of observing a given data set is chosen. However, the theoretical basis of the optimization principle remains unclear. We therefore examined the relationships of M, S, and ii for the MP, ME, and ML trees with those for the true tree by using computer simulation. The results show that M and S are generally greater for the true tree than for the MP and ME trees when the number of nucleotides examined (n) is relatively small, whereas A is generally lower for the true tree than for the hit tree. This finding indicates that the optimization principle tends to give incorrect topologies when n is small. To deal with this disturbing property of the optimization principle, we suggest that more attention should be given to testing the statistical reliability of an estimated tree rather than to finding the optimal tree with excessive efforts. When a reliability test is conducted, simplified MP, ME, and ML algorithms such as the neighbor-joining method generally give conclusions about phylogenetic inference very similar to those obtained by the more extensive tree search algorithms.
引用
收藏
页码:12390 / 12397
页数:8
相关论文
共 58 条
[1]  
ADACHI J, 1996, MOLPHY PROGRAMS MOL
[2]   The major compositional transitions in the vertebrate genome [J].
Bernardi, G ;
Hughes, S ;
Mouchiroud, D .
JOURNAL OF MOLECULAR EVOLUTION, 1997, 44 (Suppl 1) :S44-S51
[3]   HIGH-RESOLUTION OF HUMAN EVOLUTIONARY TREES WITH POLYMORPHIC MICROSATELLITES [J].
BOWCOCK, AM ;
RUIZLINARES, A ;
TOMFOHRDE, J ;
MINCH, E ;
KIDD, JR ;
CAVALLISFORZA, LL .
NATURE, 1994, 368 (6470) :455-457
[4]   PHYLOGENETIC ANALYSIS - MODELS AND ESTIMATION PROCEDURES [J].
CAVALLISFORZA, LL ;
EDWARDS, AWF .
EVOLUTION, 1967, 21 (03) :550-+
[5]  
Easteal S., 1995, MAMMALIAN MOL CLOCK
[6]  
Eck R. V., 1966, ATLAS PROTEIN SEQUEN
[7]  
EDWARDS AWF, 1963, HEREDITY, V18, P553
[8]   Bootstrap confidence levels for phylogenetic trees [J].
Efron, B ;
Halloran, E ;
Holmes, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (14) :7085-7090
[9]   PHYLOGENIES FROM MOLECULAR SEQUENCES - INFERENCE AND RELIABILITY [J].
FELSENSTEIN, J .
ANNUAL REVIEW OF GENETICS, 1988, 22 :521-565
[10]   CASES IN WHICH PARSIMONY OR COMPATIBILITY METHODS WILL BE POSITIVELY MISLEADING [J].
FELSENSTEIN, J .
SYSTEMATIC ZOOLOGY, 1978, 27 (04) :401-410