Improved multidimensional scaling analysis using neural networks with distance-error backpropagation

被引:4
作者
Garrido, L [1 ]
Gómez, S
Roca, J
机构
[1] Univ Barcelona, Dept Estructura & Constituents Mat, IFAE, E-08028 Barcelona, Spain
[2] Univ Rovira & Virgili, Dept Informat Engn, E-43006 Tarragona, Spain
关键词
D O I
10.1162/089976699300016584
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that neural networks, with a suitable error function for backpropagation, can be successfully used for metric multidimensional scaling (MDS) (i.e., dimensional reduction while trying to preserve the original distances between patterns) and are in fact able to outdo the standard algebraic approach to MDS, known as classical scaling.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 9 条