Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria

被引:341
作者
Castleton, C. W. M. [1 ,2 ]
Kullgren, J. [1 ]
Hermansson, K. [1 ]
机构
[1] Uppsala Univ, Dept Chem Mat, SE-75121 Uppsala, Sweden
[2] Linkoping Univ, IFM, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden
关键词
D O I
10.1063/1.2800015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO2 (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor Ce ions always relax outwards, with those not carrying localized Ce4f charge moving furthest. Several quantification schemes show that the charge starts to become localized at U approximate to 3 eV and that the degree of localization reaches a maximum at similar to 6 eV for LDA+U or at similar to 5.5 eV for GGA+U. For higher U it decreases rapidly as charge is transferred onto second neighbor O ions and beyond. The localization is never into atomic corelike states; at maximum localization about 80-90% of the Ce4f charge is located on the two nearest neighboring Ce ions. However, if we look at the total atomic charge we find that the two ions only make a net gain of (0.2-0.4)e each, so localization is actually very incomplete, with localization of Ce4f electrons coming at the expense of moving other electrons off the Ce ions. We have also revisited some properties of defect-free ceria and find that with LDA+U the crystal structure is actually best described with U=3-4 eV, while the experimental band structure is obtained with U=7-8 eV. (For GGA+U the lattice parameters worsen for U > 0 eV, but the band structure is similar to LDA+U.) The best overall choice is U approximate to 6 eV with LDA+U and approximate to 5.5 eV for GGA+U, since the localization is most important, but a consistent choice for both CeO2 and Ce2O3, with and without vacancies, is hard to find. (c) 2007 American Institute of Physics.
引用
收藏
页数:11
相关论文
共 75 条
[1]   VALENCE FLUCTUATIONS IN NARROW-BAND OXIDES [J].
ALLEN, JW .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1985, 47-8 (FEB) :168-174
[2]   NEW APPROACH TO THE THEORY OF SUPEREXCHANGE INTERACTIONS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1959, 115 (01) :2-13
[3]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[4]  
Andersson D., COMMUNICATION
[5]   Modeling of CeO2, Ce2O3, and CeO2-x in the LDA plus U formalism [J].
Andersson, D. A. ;
Simak, S. I. ;
Johansson, B. ;
Abrikosov, I. A. ;
Skorodumova, N. V. .
PHYSICAL REVIEW B, 2007, 75 (03)
[6]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[7]   First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method [J].
Anisimov, VI ;
Aryasetiawan, F ;
Lichtenstein, AI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (04) :767-808
[8]  
[Anonymous], J PHYS CHEM SOLIDS
[9]   Calculations of Hubbard U from first-principles [J].
Aryasetiawan, F. ;
Karlsson, K. ;
Jepsen, O. ;
Schoenberger, U. .
PHYSICAL REVIEW B, 2006, 74 (12)
[10]  
Bader R. F. W., 1990, ATOMS MOL QUANTUM TH