Numerical renormalization group at criticality

被引:73
作者
Nishino, T [1 ]
Okunishi, K [1 ]
Kikuchi, M [1 ]
机构
[1] OSAKA UNIV, GRAD SCH SCI, DEPT PHYS, TOYONAKA, OSAKA 560, JAPAN
关键词
renormalization group; finite-size scaling; critical phenomena;
D O I
10.1016/0375-9601(96)00128-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply a recently developed numerical renormalization group, the corner-transfer-matrix renormalization group (CTMRG), to 2D classical lattice models at their critical temperatures. It is shown that the combination of CTMRG and the finite-size scaling analysis gives two independent critical exponents.
引用
收藏
页码:69 / 72
页数:4
相关论文
共 23 条
[1]  
Barber M.N., 1983, PHASE TRANSITIONS CR, V8, P146
[2]   DIMERS ON A RECTANGULAR LATTICE [J].
BAXTER, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (04) :650-&
[4]  
BAXTER RJ, 1980, EXACTLY SOLVED MODEL, P363
[5]  
BURKHARDT T, 1982, TOPICS CURRENT PHYSI, V30
[6]   MICROCANONICAL RENORMALIZATION-GROUP SIMULATION OF ISING SYSTEMS [J].
DESOUZA, AJF ;
MOREIRA, FGB .
PHYSICAL REVIEW B, 1993, 48 (13) :9586-9594
[7]  
FISHER ME, 1971, 1970 P E FERM INT SC, V51, P1
[8]  
Kadanoff L. P., 1966, PHYSICS, V2, P263, DOI DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.2.263
[9]   A THEORY OF COOPERATIVE PHENOMENA [J].
KIKUCHI, R .
PHYSICAL REVIEW, 1951, 81 (06) :988-1003
[10]   MATRIX PRODUCT GROUND-STATES FOR ONE-DIMENSIONAL SPIN-1 QUANTUM ANTIFERROMAGNETS [J].
KLUMPER, A ;
SCHADSCHNEIDER, A ;
ZITTARTZ, J .
EUROPHYSICS LETTERS, 1993, 24 (04) :293-297