Reconciling dark energy models with f(R) theories -: art. no. 043503

被引:456
作者
Capozziello, S
Cardone, VF [1 ]
Troisi, A
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Grp Coll Salerno, I-84081 Baronissi, Italy
来源
PHYSICAL REVIEW D | 2005年 / 71卷 / 04期
关键词
D O I
10.1103/PhysRevD.71.043503
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Higher-order theories of gravity have recently attracted a lot of interest as alternative candidates to explain the observed cosmic acceleration without the need of introducing any scalar field. A critical ingredient is the choice of the function f(R) of the Ricci scalar curvature entering the gravity Lagrangian and determining the dynamics of the Universe. We describe an efficient procedure to reconstruct f(R) from the Hubble parameter H depending on the redshift z. Using the metric formulation of f(R) theories, we derive a third order linear differential equation for f[R(z)] which can be numerically solved after setting the boundary conditions on the basis of physical considerations. Since H(z) can be reconstructed from the astrophysical data, the method we present makes it possible to determine, in principle, what is the f(R) theory which best reproduces the observed cosmological dynamics. Moreover, the method allows to reconcile dark energy models with f(R) theories finding out what is the expression of f(R) which leads to the same H(z) of the given quintessence model. As interesting examples, we consider "quiessence" (dark energy with constant equation of state) and the Chaplygin gas.
引用
收藏
页码:043503 / 1
页数:15
相关论文
共 130 条
[1]   The case for dynamical dark energy revisited [J].
Alam, U ;
Sahni, V ;
Starobinsky, AA .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2004, (06) :113-128
[2]   Exploring the expanding Universe and dark energy using the statefinder diagnostic [J].
Alam, U ;
Sahni, V ;
Saini, TD ;
Starobinsky, AA .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 344 (04) :1057-1074
[3]   Is there supernova evidence for dark energy metamorphosis? [J].
Alam, U ;
Sahni, V ;
Saini, TD ;
Starobinsky, AA .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 354 (01) :275-291
[4]  
ALAM U, ASTROPH0406672
[5]   Accelerated cosmological models in first-order nonlinear gravity [J].
Allemandi, G ;
Borowiec, A ;
Francaviglia, M .
PHYSICAL REVIEW D, 2004, 70 (04)
[6]   Accelerated cosmological models in Ricci squared gravity [J].
Allemandi, G ;
Borowiec, A ;
Francaviglia, M .
PHYSICAL REVIEW D, 2004, 70 (10) :103503-1
[7]  
ALLEMANDI G, HEPTH0409198
[8]  
ALLEMANDI G, UNPUB
[9]   Cosmological constraints from the X-ray gas mass fraction in relaxed lensing clusters observed with Chandra [J].
Allen, SW ;
Schmidt, RW ;
Fabian, AC .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 334 (02) :L11-L15
[10]   Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters [J].
Allen, SW ;
Schmidt, RW ;
Ebeling, H ;
Fabian, AC ;
van Speybroeck, L .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 353 (02) :457-467