AphA and LuxR/HapR reciprocally control quorum sensing in vibrios

被引:214
作者
Rutherford, Steven T. [1 ]
van Kessel, Julia C. [1 ]
Shao, Yi [1 ]
Bassler, Bonnie L. [1 ,2 ]
机构
[1] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[2] Princeton Univ, Howard Hughes Med Inst, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
quorum sensing; AphA; LuxR; Qrr sRNA; virulence; VIRULENCE ACTIVATOR APHA; GENE-EXPRESSION; REGULATORY RNAS; CHOLERAE; HARVEYI; BINDING; LUXR; AUTOREGULATION; BIOSYNTHESIS; TRANSLATION;
D O I
10.1101/gad.2015011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Bacteria cycle between periods when they perform individual behaviors and periods when they perform group behaviors. These transitions are controlled by a cell-cell communication process called quorum sensing, in which extracellular signal molecules, called autoinducers (AIs), are released, accumulate, and are synchronously detected by a group of bacteria. AI detection results in community-wide changes in gene expression, enabling bacteria to collectively execute behaviors such as bioluminescence, biofilm formation, and virulence factor production. In this study, we show that the transcription factor AphA is a master regulator of quorum sensing that operates at low cell density (LCD) in Vibrio harveyi and Vibrio cholerae. In contrast, LuxR (V. harveyi)/HapR (V. cholerae) is the master regulator that operates at high cell density (HCD). At LCD, redundant small noncoding RNAs (sRNAs) activate production of AphA, and AphA and the sRNAs repress production of LuxR/HapR. Conversely, at HCD, LuxR/HapR represses aphA. This network architecture ensures maximal AphA production at LCD and maximal LuxR/HapR production at HCD. Microarray analyses reveal that 300 genes are regulated by AphA at LCD in V. harveyi, a subset of which is also controlled by LuxR. We propose that reciprocal gradients of AphA and LuxR/HapR establish the quorum-sensing LCD and HCD gene expression patterns, respectively.
引用
收藏
页码:397 / 408
页数:12
相关论文
共 59 条
[1]  
[Anonymous], 1989, Molecular Cloning: A Laboratory
[2]   INTERCELLULAR SIGNALING IN VIBRIO-HARVEYI - SEQUENCE AND FUNCTION OF GENES REGULATING EXPRESSION OF LUMINESCENCE [J].
BASSLER, BL ;
WRIGHT, M ;
SHOWALTER, RE ;
SILVERMAN, MR .
MOLECULAR MICROBIOLOGY, 1993, 9 (04) :773-786
[3]   Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi [J].
Bassler, BL ;
Greenberg, EP ;
Stevens, AM .
JOURNAL OF BACTERIOLOGY, 1997, 179 (12) :4043-4045
[4]   Engineering stability in gene networks by autoregulation [J].
Becskei, A ;
Serrano, L .
NATURE, 2000, 405 (6786) :590-593
[5]   Towards single-copy gene expression systems making gene cloning physiologically relevant:: Lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system [J].
Boyd, D ;
Weiss, DS ;
Chen, JC ;
Beckwith, J .
JOURNAL OF BACTERIOLOGY, 2000, 182 (03) :842-847
[6]   TRANSPOSITION AND FUSION OF LAC GENES TO SELECTED PROMOTERS IN ESCHERICHIA-COLI USING BACTERIOPHAGE-LAMBDA AND BACTERIOPHAGE-MU [J].
CASADABAN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 104 (03) :541-555
[7]   Gene expression profiling of Escherichia coli growth transitions:: an expanded stringent response model [J].
Chang, DE ;
Smalley, DJ ;
Conway, T .
MOLECULAR MICROBIOLOGY, 2002, 45 (02) :289-306
[8]   Autoregulation of luxR: The Vibrio harveyi lux-operon activator functions as a repressor [J].
Chatterjee, J ;
Miyamoto, CM ;
Meighen, EA .
MOLECULAR MICROBIOLOGY, 1996, 20 (02) :415-425
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   The involvement of cell-to-cell signals in the development of a bacterial biofilm [J].
Davies, DG ;
Parsek, MR ;
Pearson, JP ;
Iglewski, BH ;
Costerton, JW ;
Greenberg, EP .
SCIENCE, 1998, 280 (5361) :295-298