Phase coexistence and finite-size scaling in random combinatorial problems

被引:19
作者
Leone, M
Ricci-Tersenghi, F
Zecchina, R
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Abdus Salam Int Ctr Theoret Phys, Condensed Matter Grp, I-34100 Trieste, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 22期
关键词
D O I
10.1088/0305-4470/34/22/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an exactly solvable version of the well known random Boolean satisfiability (SAT) problem, the so-called random XOR-SAT problem. Rare events are shown to affect the combinatorial 'phase diagram' leading to a coexistence of solvable and unsolvable instances of the combinatorial problem in a certain region of the parameters characterizing the model. Such instances differ by a non-extensive quantity in the ground state energy of the associated diluted spin glass model. We also show that the critical exponent v, controlling the size of the critical window where the probability of having solutions vanishes, depends on the model parameters, shedding light on the link between random hyper-graph topology and universality classes. In the case of random SAT, a similar behaviour was conjectured to be connected to the onset of computational intractability.
引用
收藏
页码:4615 / 4626
页数:12
相关论文
共 23 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]  
Bollobas B, 1985, RANDOM GRAPHS
[3]  
BOLLOBAS B, 1999, ARXIVMATHCO9909031
[4]  
Chvatal V., 1992, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Cat. No.92CH3188-0), P620, DOI 10.1109/SFCS.1992.267789
[5]  
Cook S.A., 1971, P 3 ANN ACM S THEOR, P151, DOI DOI 10.1145/800157.805047
[6]   Satisfiability threshold for random XOR-CNF formulas [J].
Creignou, N ;
Daude, H .
DISCRETE APPLIED MATHEMATICS, 1999, 97 :41-53
[7]  
DUBOIS O, 2001, IN PRESS THEOR COMPU
[8]  
FRANZ S, 2001, CONDMAT0103328
[9]  
FRANZ S, 2001, CONDMAT0103026
[10]  
GOERDT A, 1992, LECT NOTES COMPUT SC, V629, P264