Probing the domain structure and ligand-induced conformational changes by limited proteolysis of tyrocidine synthetase 1

被引:47
作者
Dieckmann, R
Pavela-Vrancic, M
von Döhren, H [1 ]
Kleinkauf, H
机构
[1] Tech Univ Berlin, Max Volmer Inst Biophys Chem & Biochem, Berlin, Germany
[2] Univ Split, Fac Nat Sci Math & Educ, Split, Croatia
关键词
multifunctional enzymes; peptide synthetases; domain organization; linkers; conformational changes;
D O I
10.1006/jmbi.1999.2671
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The boundaries of the structural domains in peptide synthetases and the conformational changes related to catalysis were investigated by limited proteolysis of tyrocidine synthetase 1 (TY1). Four regions sensitive to proteolysis were detected (cleavage site at Arg13, Arg424, Arg509 and Arg602) that, in addition to an N-terminal extension, accurately delineate the domain boundaries of the adenylate-forming domain, the aminoacyl carrier domain, and the epimerisation domain limited proteolysis of an active N-terminal truncated deletion mutant, His(6)Delta TY1, generated two stable and structurally independent subunits, corresponding to the subdomains of the adenylation domain. The structural integrity of the carrier domain was substantiated by its resistance to proteolytic degradation Evidence is provided that the C-terminal "spacer" region with epimerising and/or condensing activity folds into an autonomous domain stable against degradation by limited proteolysis. In the presence of substrates, reduced susceptibility to proteolysis was observed in the linker region connecting the subdomains of the adenylation domain, and corresponding to a peptide stretch of low electron density in the X-ray structure of the homologous firefly luciferase. Sequence analysis has shown that the respective linker contains conserved residues, whereas the linker regions connecting the structural domains are of low homology with a significant content of Pro, Ala, Glu and polar residues. A combination of kinetic and proteolytic studies using ATP analogues with substitutions in the phosphate chain, AMP-PcP, AMP-PNP and AMP-cPP, strongly suggests that the generation of a productive complex is associated with the ability of the beta,gamma-pyrophosphate moiety of ATP to adopt the proper active-site conformation. These data substantiate the observation that peptide synthetases undergo a series of conformational changes in the process of adenylate formation and product release. (C) 1999 Academic Press.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 50 条
[1]  
ALTMANN M, 1982, PEPTIDE ANTIBIOTICS, P243
[2]  
APARICIO JF, 1994, J BIOL CHEM, V269, P8524
[3]   AN INVESTIGATION OF OLIGOPEPTIDES LINKING DOMAINS IN PROTEIN TERTIARY STRUCTURES AND POSSIBLE CANDIDATES FOR GENERAL GENE FUSION [J].
ARGOS, P .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 211 (04) :943-958
[4]   LIMITED PROTEOLYSIS AS A PROBE OF CONFORMATIONAL-CHANGES IN ASPARTATE-AMINOTRANSFERASE FROM SULFOLOBUS-SOLFATARICUS [J].
ARNONE, MI ;
BIROLO, L ;
GIAMBERINI, M ;
CUBELLIS, MV ;
NITTI, G ;
SANNIA, G ;
MARINO, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 204 (03) :1183-1189
[5]   ANCESTRY OF THE 4-CHLOROBENZOATE DEHALOGENASE - ANALYSIS OF AMINO-ACID-SEQUENCE IDENTITIES AMONG FAMILIES OF ACYL-ADENYL LIGASES, ENOYL-COA HYDRATASES ISOMERASES, AND ACYL-COA THIOESTERASES [J].
BABBITT, PC ;
KENYON, GL ;
MARTIN, BM ;
CHAREST, H ;
SLYVESTRE, M ;
SCHOLTEN, JD ;
CHANG, KH ;
LIANG, PH ;
DUNAWAYMARIANO, D .
BIOCHEMISTRY, 1992, 31 (24) :5594-5604
[6]   THE STRUCTURAL BASIS FOR SERYL-ADENYLATE AND AP(4)A SYNTHESIS BY SERYL-TRANSFER-RNA SYNTHETASE [J].
BELRHALI, H ;
YAREMCHUK, A ;
TUKALO, M ;
BERTHETCOLOMINAS, C ;
RASMUSSEN, B ;
BOSECKE, P ;
DIAT, O ;
CUSACK, S .
STRUCTURE, 1995, 3 (04) :341-352
[7]   6-DEOXYERYTHRONOLIDE-B SYNTHASE-2 FROM SACCHAROPOLYSPORA-ERYTHRAEA - CLONING OF THE STRUCTURAL GENE, SEQUENCE-ANALYSIS AND INFERRED DOMAIN-STRUCTURE OF THE MULTIFUNCTIONAL ENZYME [J].
BEVITT, DJ ;
CORTES, J ;
HAYDOCK, SF ;
LEADLAY, PF .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 204 (01) :39-49
[8]   THE ACTIVE-SITE OF YEAST ASPARTYL-TRANSFER-RNA SYNTHETASE - STRUCTURAL AND FUNCTIONAL-ASPECTS OF THE AMINOACYLATION REACTION [J].
CAVARELLI, J ;
ERIANI, G ;
REES, B ;
RUFF, M ;
BOEGLIN, M ;
MITSCHLER, A ;
MARTIN, F ;
GANGLOFF, J ;
THIERRY, JC ;
MORAS, D .
EMBO JOURNAL, 1994, 13 (02) :327-337
[9]   Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S [J].
Conti, E ;
Stachelhaus, T ;
Marahiel, MA ;
Brick, P .
EMBO JOURNAL, 1997, 16 (14) :4174-4183
[10]   Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes [J].
Conti, E ;
Franks, NP ;
Brick, P .
STRUCTURE, 1996, 4 (03) :287-298