Approximate non-linear boundary value problems of reinforced shell dynamics

被引:14
作者
Andrianov, IV
Kholod, EG
Olevsky, VI
机构
[1] DNEPROPETROVSK STATE MET ACAD, UA-320095 DNEPROPETROVSK, UKRAINE
[2] SCI RES INST MECHANIZAT & ROBOTIZAT IRON & STEEL, UA-320030 DNEPROPETROVSK, UKRAINE
关键词
D O I
10.1006/jsvi.1996.0364
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A geometrically non-linear theory is presented for the dynamic analysis of thin, circular cylindrical shells which have wafer, stringer or ring stiffening. An asymptotic procedure is followed which separates the solution of the non-linear equations of motion into two parts, an inner part which applies to the boundary layer, and an outer part. The resulting approximate equations are relatively simple to deal with. A numerical example is solved for the free vibrations of a simply supported, stringer-stiffened shell. (C) 1996 Academic Press Limited
引用
收藏
页码:369 / 387
页数:19
相关论文
共 33 条
[1]  
Ambartsumyan SA., 1974, GEN THEORY ANISOTROP
[2]   STUDIES OF THE DYNAMICS OF RIBBED SHELLS [J].
AMIRO, IY ;
ZARUTSKII, VA .
SOVIET APPLIED MECHANICS, 1981, 17 (11) :949-963
[3]   APPROXIMATE EQUATIONS OF AXISYMMETRIC VIBRATIONS OF CYLINDRICAL-SHELLS [J].
ANDRIANOV, IV ;
MANEVICH, LI .
SOVIET APPLIED MECHANICS, 1981, 17 (08) :722-727
[4]  
ANDRIANOV IV, 1993, J SOUND VIBRATION, V160, P594
[5]  
ANDRIANOV IV, 1976, SOV APPL MECH, V11, P726
[6]  
[Anonymous], CRM P LECT NOTES
[7]  
BABCOCK CD, 1975, AM I AERONAUTICS AST, V13, P868
[8]  
BOLOTIN VV, 1961, PROBLEMS CONTINUUM M, P56
[9]  
BOLOTIN VV, 1979, RANDOM VIBRATIONS EL
[10]  
CIARLET PG, 1994, MATH SHELL THEORY LI