Temperature dependence of crystal growth of hexagonal ice (Ih)

被引:73
作者
Rozmanov, Dmitri [1 ]
Kusalik, Peter G. [1 ]
机构
[1] Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada
关键词
MOLECULAR-DYNAMICS; POTENTIAL MODEL; MELTING-POINT; LIQUID WATER; 6-SITE MODEL; KINETICS; SIMULATION; ANISOTROPY;
D O I
10.1039/c1cp21210a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The transformations between water and ice have many implications across numerous fields of study. A better understanding of this process would benefit many areas of science and technology such as medicine, biology, and atmospheric and material sciences. In the present work the temperature dependence of the rate of growth (melting) of the basal face of hexagonal ice I-h and the effect of system size are investigated in molecular dynamics simulations. Using an effective pair potential model of water, systems are studied over temperatures ranging from T-M - 40 to T-M + 16 K, where T-M is the melting temperature of the model. It is found that the growth rates reach a maximum value of 0.7 angstrom ns(-1) (7 cm s(-1)) at about 12 K below the melting temperature. A noticeable effect of the system size on the melting temperature and ice growth rates is observed; it is shown that the size effect arises in smaller systems due to the artificial ordering under periodic conditions. The decrease in melting entropy in the smallest system by 0.4 J (mol K)(-1) relative to the largest system results in an up-shift in the melting temperature by about 2 K. An almost 60% increase in the maximum growth rate is observed for the smallest system.
引用
收藏
页码:15501 / 15511
页数:11
相关论文
共 42 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   The melting temperature of the six site potential model of water [J].
Abascal, Jose L. F. ;
Garcia Fernandez, Ramon ;
Vega, Carlos ;
Carignano, Marcelo A. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (16)
[3]   PHASE-EQUILIBRIA IN EXTENDED SIMPLE POINT-CHARGE ICE-WATER SYSTEMS [J].
BAEZ, LA ;
CLANCY, P .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (22) :9744-9755
[4]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions [J].
Bernal, JD ;
Fowler, RH .
JOURNAL OF CHEMICAL PHYSICS, 1933, 1 (08) :515-548
[7]   Molecular dynamics simulations of ice growth from supercooled water [J].
Carignano, MA ;
Shepson, PB ;
Szleifer, I .
MOLECULAR PHYSICS, 2005, 103 (21-23) :2957-2967
[8]   Formation of stacking faults during ice growth on hexagonal and cubic substrates [J].
Carignano, Marcelo A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (02) :501-504
[9]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[10]   The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface [J].
Fernández, RG ;
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (14)