The ethylene signaling pathway: new insights

被引:710
作者
Guo, HW [1 ]
Ecker, JR [1 ]
机构
[1] Salk Inst Biol Studies, Plant Biol Lab, La Jolla, CA 92037 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1016/j.pbi.2003.11.011
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
During the past decade, molecular genetic studies on the reference plant Arabidopsis have established a largely linear signal transduction pathway for the response to ethylene gas. The biochemical modes of action of many of the signaling components are still unresolved. During the past year, however, progress in several areas has been made on several fronts. The different approaches used have included a functional study of the activity of the receptor His kinase, the determination of the ethylene receptor signaling complex at the endoplasmic reticulum and of the regulation of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) activity by these receptors, the identification of a unique MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade, the cloning and characterization of numerous ETHYLENE INSENSITIVE3 (EIN3)/EIN3-like (EIL) transcription factors from many plant species, and the integration of the ethylene and jasmonate response pathways via the ETHYLENE RESPONSE FACTOR (ERF) family of transcription factors. The elucidation of the biochemical mechanisms of ethylene signal transduction and the identification of new components in the ethylene response pathway in Arabidopsis are providing a framework for understanding how all plants sense and respond to ethylene.
引用
收藏
页码:40 / 49
页数:10
相关论文
共 51 条
  • [1] EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis
    Alonso, JM
    Hirayama, T
    Roman, G
    Nourizadeh, S
    Ecker, JR
    [J]. SCIENCE, 1999, 284 (5423) : 2148 - 2152
  • [2] Genome-wide Insertional mutagenesis of Arabidopsis thaliana
    Alonso, JM
    Stepanova, AN
    Leisse, TJ
    Kim, CJ
    Chen, HM
    Shinn, P
    Stevenson, DK
    Zimmerman, J
    Barajas, P
    Cheuk, R
    Gadrinab, C
    Heller, C
    Jeske, A
    Koesema, E
    Meyers, CC
    Parker, H
    Prednis, L
    Ansari, Y
    Choy, N
    Deen, H
    Geralt, M
    Hazari, N
    Hom, E
    Karnes, M
    Mulholland, C
    Ndubaku, R
    Schmidt, I
    Guzman, P
    Aguilar-Henonin, L
    Schmid, M
    Weigel, D
    Carter, DE
    Marchand, T
    Risseeuw, E
    Brogden, D
    Zeko, A
    Crosby, WL
    Berry, CC
    Ecker, JR
    [J]. SCIENCE, 2003, 301 (5633) : 653 - 657
  • [3] Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis
    Alonso, JM
    Stepanova, AN
    Solano, R
    Wisman, E
    Ferrari, S
    Ausubel, FM
    Ecker, JR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) : 2992 - 2997
  • [4] ALONSO JM, 2001, SCI STKE, pRE1
  • [5] Ethylene: A gaseous signal molecule in plants
    Bleecker, AB
    Kende, H
    [J]. ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 : 1 - +
  • [6] A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis
    Brown, RL
    Kazan, K
    McGrath, KC
    Maclean, DJ
    Manners, JM
    [J]. PLANT PHYSIOLOGY, 2003, 132 (02) : 1020 - 1032
  • [7] Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis
    Cancel, JD
    Larsen, PB
    [J]. PLANT PHYSIOLOGY, 2002, 129 (04) : 1557 - 1567
  • [8] Differential activation of four specific MAPK pathways by distinct elicitors
    Cardinale, F
    Jonak, C
    Ligterink, W
    Niehaus, K
    Boller, T
    Hirt, H
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) : 36734 - 36740
  • [9] CHAGN C, 2003, TRENDS PLANT SCI, V8, P365
  • [10] Ethylene hormone receptor action in Arabidopsis
    Chang, C
    Stadler, R
    [J]. BIOESSAYS, 2001, 23 (07) : 619 - 627