Stable plastid transformation in lettuce (Lactuca sativa L.)

被引:95
作者
Lelivelt, CLC
McCabe, MS
Newell, CA
deSnoo, CB
van Dun, KMP
Birch-Machin, I
Gray, JC
Mills, KHG
Nugent, JM [1 ]
机构
[1] Natl Univ Ireland, Inst Bioengn & Agroecol, Maynooth, Kildare, Ireland
[2] Rijk Zwaan Breeding BV, NL-4793 RS Fijnaart, Netherlands
[3] Univ Cambridge, Dept Plant Sci, Cambridge CB2 3EA, England
[4] Univ Dublin Trinity Coll, Dept Biochem, Dublin 2, Ireland
[5] Univ Cambridge, Dept Anat, Cambridge CB2 3DY, England
关键词
aadA; lettuce; PEG; plastid transformation; trnI/trnA;
D O I
10.1007/s11103-005-7704-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although plastid transformation in higher plants was first demonstrated in the early 1990s it is only recently that the technology is being extended to a broader range of species. To date, the production of fertile transplastomic plants has been reported for tobacco, tomato, petunia, soybean, cotton and Lesquerella fendleri (Brassicaceae). In this study we demonstrate a polyethylene glycol-mediated plastid transformation system for lettuce that generates fertile, homoplasmic, plastid-transformed lines. Transformation was achieved using a vector that targets genes to the trnA/trnI intergenic region of the lettuce plastid genome employing the aadA gene as a selectable marker against spectinomycin. Spectinomycin resistance and heterologous gene transcription were shown in T-1 plants derived from self-pollinated primary regenerants demonstrating transmission of the plastid-encoded transgene to the first seed generation. Crossing with male sterile wild-type lettuce showed that spectinomycin resistance was not transmitted via pollen. Constructs containing the gfp gene showed plastid-based expression of green fluorescent protein. The lettuce plastid could have potential both as a production and a delivery system for edible human therapeutic proteins.
引用
收藏
页码:763 / 774
页数:12
相关论文
共 50 条
[1]   WHY DO CHLOROPLASTS AND MITOCHONDRIA CONTAIN SO MANY COPIES OF THEIR GENOME [J].
BENDICH, AJ .
BIOESSAYS, 1987, 6 (06) :279-282
[2]   Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability [J].
Birch-Machin, I ;
Newell, CA ;
Hibberd, JM ;
Gray, JC .
PLANT BIOTECHNOLOGY JOURNAL, 2004, 2 (03) :261-270
[3]   The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models [J].
Birky, CW .
ANNUAL REVIEW OF GENETICS, 2001, 35 :125-148
[4]   CHLOROPLAST TRANSFORMATION IN CHLAMYDOMONAS WITH HIGH-VELOCITY MICROPROJECTILES [J].
BOYNTON, JE ;
GILLHAM, NW ;
HARRIS, EH ;
HOSLER, JP ;
JOHNSON, AM ;
JONES, AR ;
RANDOLPHANDERSON, BL ;
ROBERTSON, D ;
KLEIN, TM ;
SHARK, KB ;
SANFORD, JC .
SCIENCE, 1988, 240 (4858) :1534-1538
[5]   Containment of herbicide resistance through genetic engineering of the chloroplast genome [J].
Daniell, H ;
Datta, R ;
Varma, S ;
Gray, S ;
Lee, SB .
NATURE BIOTECHNOLOGY, 1998, 16 (04) :345-348
[6]  
Datta K, 1999, METH MOL B, V111, P335
[7]   Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals [J].
De Cosa, B ;
Moar, W ;
Lee, SB ;
Miller, M ;
Daniell, H .
NATURE BIOTECHNOLOGY, 2001, 19 (01) :71-74
[8]   Generation of fertile transplastomic soybean [J].
Dufourmantel, N ;
Pelissier, B ;
Garçon, F ;
Peltier, G ;
Ferullo, JM ;
Tissot, G .
PLANT MOLECULAR BIOLOGY, 2004, 55 (04) :479-489
[9]   Plant-based production of biopharmaceuticals [J].
Fischer, R ;
Stoger, E ;
Schillberg, S ;
Christou, P ;
Twyman, RM .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (02) :152-158
[10]   ISOLATION, CULTURE AND REGENERATION OF PETUNIA LEAF PROTOPLASTS [J].
FREARSON, EM ;
POWER, JB ;
COCKING, EC .
DEVELOPMENTAL BIOLOGY, 1973, 33 (01) :130-137