Discovering potent and selective reversible inhibitors of enzymes in complex proteomes

被引:314
作者
Leung, D
Hardouin, C
Boger, DL
Cravatt, BF
机构
[1] Skaggs Inst. for Chemical Biology, Department of Chemistry, Scripps Research Institute, San Diego, CA 92037
[2] Skaggs Inst. for Chemical Biology, Department of Cell Biology, Scripps Research Institute, San Diego, CA 92037
关键词
D O I
10.1038/nbt826
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To realize the promise of genomics-based therapeutics, new methods are needed to accelerate the discovery of small molecules that selectively modulate protein activity. Toward this end, advances in combinatorial synthesis have provided unprecedented access to large compound libraries of considerable structural complexity and diversity(1,2), shifting the bottleneck in drug discovery to the development of efficient screens for protein targets(3). Screening for reversible enzyme inhibitors typically requires extensive target-specific work, including protein expression and purification, as well as the development of specific substrate assays. Here we report a proteomic method for the discovery of reversible enzyme inhibitors that avoids these steps. We show that competitive profiling of a library of candidate serine hydrolase inhibitors in complex proteomes with activity-based chemical probes(4-6) identifies nanomolar reversible inhibitors of several enzymes simultaneously, including the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH)(7), triacylglycerol hydrolase (TGH)(8) and an uncharacterized membrane-associated hydrolase that lacks known substrates. The strategy tests inhibitors against numerous enzymes in parallel, assigning both potency and selectivity factors to each agent. In this way, promiscuous inhibitors were readily rejected in favor of equally potent compounds with 500-fold or greater selectivity for their targets.
引用
收藏
页码:687 / 691
页数:5
相关论文
共 27 条
  • [1] Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype
    Adam, GC
    Sorensen, EJ
    Cravatt, BF
    [J]. NATURE BIOTECHNOLOGY, 2002, 20 (08) : 805 - 809
  • [2] Profiling the specific reactivity of the proteome with non-directed activity-based probes
    Adam, GC
    Cravatt, BF
    Sorensen, EJ
    [J]. CHEMISTRY & BIOLOGY, 2001, 8 (01): : 81 - 95
  • [3] Chemical strategies for functional proteomics
    Adam, GC
    Sorensen, EJ
    Cravatt, BF
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (10) : 781 - 790
  • [4] Structure-function analysis of human triacylglycerol hydrolase by site-directed mutagenesis: Identification of the catalytic triad and a glycosylation site
    Alam, M
    Vance, DE
    Lehner, R
    [J]. BIOCHEMISTRY, 2002, 41 (21) : 6679 - 6687
  • [5] Exceptionally potent inhibitors of fatty acid amide hydrolase: The enzyme responsible for degradation of endogenous oleamide and anandamide
    Boger, DL
    Sato, H
    Lerner, AE
    Hedrick, MP
    Fecik, RA
    Miyauchi, H
    Wilkie, GD
    Austin, BJ
    Patricelli, MP
    Cravatt, BF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) : 5044 - 5049
  • [6] Trifluoromethyl ketone inhibitors of fatty acid amide hydrolase: A probe of structural and conformational features contributing to inhibition
    Boger, DL
    Sato, H
    Lerner, AE
    Austin, BJ
    Patterson, JE
    Patricelli, MP
    Cravatt, BF
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1999, 9 (02) : 265 - 270
  • [7] Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme
    Borodovsky, A
    Ovaa, H
    Kolli, N
    Gan-Erdene, T
    Wilkinson, KD
    Ploegh, HL
    Kessler, BM
    [J]. CHEMISTRY & BIOLOGY, 2002, 9 (10): : 1149 - 1159
  • [8] Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling
    Bracey, MH
    Hanson, MA
    Masuda, KR
    Stevens, RC
    Cravatt, BF
    [J]. SCIENCE, 2002, 298 (5599) : 1793 - 1796
  • [9] Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides
    Cravatt, BF
    Giang, DK
    Mayfield, SP
    Boger, DL
    Lerner, RA
    Gilula, NB
    [J]. NATURE, 1996, 384 (6604) : 83 - 87
  • [10] Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase
    Cravatt, BF
    Demarest, K
    Patricelli, MP
    Bracey, MH
    Giang, DK
    Martin, BR
    Lichtman, AH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) : 9371 - 9376