Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding - Fine-tuning of mRNA regulation?

被引:118
作者
Ke, YH
Wu, JY
Leibold, EA
Walden, WE
Theil, EC
机构
[1] N Carolina State Univ, Dept Biochem, Raleigh, NC 27695 USA
[2] Univ Utah, Dept Med, Salt Lake City, UT 84112 USA
[3] Univ Utah, Eccles Program Human Mol Biol & Genet, Salt Lake City, UT 84112 USA
[4] Univ Illinois, Dept Microbiol & Immunol, Chicago, IL 60612 USA
关键词
D O I
10.1074/jbc.273.37.23637
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A family of noncoding mRNA sequences, iron-responsive elements (IREs), coordinately regulate several mRNAs through binding a family of mRNA-specific proteins, iron regulatory proteins (IRPs). IREs are hairpins with a constant terminal loop and base-paired stems interrupted by an internal loop/bulge tin ferritin mRNA) or a C-bulge tin m-aconitase, erythroid aminolevulinate synthase, and transferrin receptor mRNAs). IRP2 binding requires the conserved C-G base pair in the terminal loop, whereas IRP1 binding occurs with the C-G or engineered U-A. Here we show the contribution of the IRE internal loop/bulge to IRP2 binding by comparing natural and engineered IRE variants. Conversion of the internal loop/bulge in the ferritin-IRE to a C-bulge, by deletion of U, decreased IRP2 binding by >95%, whereas IRP1 binding changed only 13%. Moreover, IRP2 binding to natural IREs with the C-bulge was similar to the Delta U-6 ferritin-IRE: >90% lower than the ferritin-IRE. The results predict mRNA-specific variation in IRE-dependent regulation in vivo and may relate to previously observed differences in iron-induced ferritin and m-aconitase synthesis in liver and cultured cells. Variations in IRE structure and cellular IRP1/IRP2 ratios can provide a range of finely tuned, mRNA-specific responses to the same (iron) signal.
引用
收藏
页码:23637 / 23640
页数:4
相关论文
共 57 条
[1]   Structure and dynamics of the iron responsive element RNA: Implications for binding of the RNA by iron regulatory binding proteins [J].
Addess, KJ ;
Basilion, JP ;
Klausner, RD ;
Rouault, TA ;
Pardi, A .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 274 (01) :72-83
[2]   THE IRON-RESPONSIVE ELEMENT-BINDING PROTEIN - LOCALIZATION OF THE RNA-BINDING SITE TO THE ACONITASE ACTIVE-SITE CLEFT [J].
BASILION, JP ;
ROUAULT, TA ;
MASSINOPLE, CM ;
KLAUSNER, RD ;
BURGESS, WH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (02) :574-578
[3]  
BETTANY AJE, 1992, J BIOL CHEM, V267, P16531
[4]  
BHASKER CR, 1993, J BIOL CHEM, V268, P12699
[5]   Differences in the RNA binding sites of iron regulatory proteins and potential target diversity [J].
Butt, J ;
Kim, HY ;
Basilion, JP ;
Cohen, S ;
Iwai, K ;
Philpott, CC ;
Altschul, S ;
Klausner, RD ;
Rouault, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :4345-4349
[6]   IRON-RESPONSIVE ELEMENTS - REGULATORY RNA SEQUENCES THAT CONTROL MESSENGER-RNA LEVELS AND TRANSLATION [J].
CASEY, JL ;
HENTZE, MW ;
KOELLER, DM ;
CAUGHMAN, SW ;
ROUAULT, TA ;
KLAUSNER, RD ;
HARFORD, JB .
SCIENCE, 1988, 240 (4854) :924-928
[7]   Dietary iron intake modulates the activity of iron regulatory proteins and the abundance of ferritin and mitochondrial aconitase in rat liver [J].
Chen, OS ;
Schalinske, KL ;
Eisenstein, RS .
JOURNAL OF NUTRITION, 1997, 127 (02) :238-248
[8]   HUMAN ERYTHROID 5-AMINOLEVULINATE SYNTHASE - PROMOTER ANALYSIS AND IDENTIFICATION OF AN IRON-RESPONSIVE ELEMENT IN THE MESSENGER-RNA [J].
COX, TC ;
BAWDEN, MJ ;
MARTIN, A ;
MAY, BK .
EMBO JOURNAL, 1991, 10 (07) :1891-1902
[9]   IDENTIFICATION OF A NOVEL IRON-RESPONSIVE ELEMENT IN MURINE AND HUMAN ERYTHROID DELTA-AMINOLEVULINIC-ACID SYNTHASE MESSENGER-RNA [J].
DANDEKAR, T ;
STRIPECKE, R ;
GRAY, NK ;
GOOSSEN, B ;
CONSTABLE, A ;
JOHANSSON, HE ;
HENTZE, MW .
EMBO JOURNAL, 1991, 10 (07) :1903-1909
[10]  
DICKEY LF, 1988, J BIOL CHEM, V263, P3071