Continuous-velocity lattice-gas model for fluid flow

被引:44
作者
Malevanets, A
Kapral, R
机构
[1] Dept Phys, Oxford OX1 3NP, England
[2] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada
来源
EUROPHYSICS LETTERS | 1998年 / 44卷 / 05期
关键词
D O I
10.1209/epl/i1998-00508-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A continuous-velocity lattice-gas model for fluid dynamics computations is constructed. The model combines a stochastic propagation scheme with a multi-particle collision rule that conserves mass, momentum and energy. It is demonstrated that the particle velocities have a Maxwell-Boltzmann distribution at equilibrium. A Chapman-Enskog analysis leads to the Navier-Stokes equation. Simulations support the results of the theoretical analysis and demonstrate that the model reproduces the observed behavior of flows for various values of the Reynolds number. The model also provides a means to investigate the statistical mechanical basis of macroscopic laws.
引用
收藏
页码:552 / 558
页数:7
相关论文
共 9 条
[1]  
Batchelor G., 2000, CAMBRIDGE MATH LIB
[2]   Digital physics approach to computational fluid dynamics: Some basic theoretical features [J].
Chen, HD ;
Teixeira, C ;
Molvig, K .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04) :675-684
[3]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[4]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[5]  
Frisch U., 1987, Complex Systems, V1, P649
[6]  
GATINGNOL R, 1992, RAREFIED GAS DYN, P37
[7]   SPONTANEOUS FLUCTUATION CORRELATIONS IN THERMAL LATTICE-GAS AUTOMATA [J].
GROSFILS, P ;
BOON, JP ;
LALLEMAND, P .
PHYSICAL REVIEW LETTERS, 1992, 68 (07) :1077-1080
[8]  
LAWNICZAK AT, 1996, PATTERN FORMATION LA
[9]  
Rothman DH, 2004, Lattice-gas cellular automata: Simple models of complex hydrodynamics