The MIA system for protein import into the mitochondrial intermembrane space

被引:46
作者
Stojanovski, Diana [1 ]
Mueller, Judith M. [1 ]
Milenkovic, Dusanka [1 ]
Guiard, Bemard [1 ]
Pfanner, Nikolaus [1 ]
Chacinska, Agnieszka [1 ]
机构
[1] Univ Freiburg, Zent Biochem & Mol Zellforsch, Ins Biochem & Molekularbiol, D-79104 Freiburg, Germany
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH | 2008年 / 1783卷 / 04期
关键词
mitochondria; intermembrane space; disulfide bonds; protein import and assembly;
D O I
10.1016/j.bbamcr.2007.10.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
When thinking of the mitochondrial intermembrane space we envisage a small compartment that is bordered by the mitochondrial outer and inner membranes. Despite this somewhat simplified perception the intermembrane space has remained a central focus in mitochondrial biology. This compartment accommodates many proteinaceous factors that play critical roles in mitochondrial and cellular metabolism, including the regulation of programmed cell death and energy conversion. The mechanism by which intermembrane space proteins are transported into the organelle and folded remained largely unknown until recently. In pursuit of the answer to this question a novel machinery, the Mitochondrial Intermembrane Space Assembly machinery, exploiting a unique regulated thiol-disulfide exchange mechanism has been revealed. This exciting discovery has not only put in place novel concepts for the biogenesis of intermembrane space precursors but also raises important implications on the mechanisms involved in the generation and transfer of disulfide bonds. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:610 / 617
页数:8
相关论文
共 57 条
[1]   Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c [J].
Allen, S ;
Balabanidou, V ;
Sideris, DP ;
Lisowsky, T ;
Tokatlidis, K .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 353 (05) :937-944
[2]   Mitochondrial protein-import machinery: correlating structure with function [J].
Baker, Michael J. ;
Frazier, Ann E. ;
Gulbis, Jacqueline M. ;
Ryan, Michael T. .
TRENDS IN CELL BIOLOGY, 2007, 17 (09) :456-464
[3]   The diversity of oxidative protein folding [J].
Benham, Adam M. ;
Sitia, Roberto .
ANTIOXIDANTS & REDOX SIGNALING, 2006, 8 (3-4) :271-273
[4]   Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins [J].
Chacinska, A ;
Pfannschmidt, S ;
Wiedemann, N ;
Kozjak, V ;
Szklarz, LKS ;
Schulze-Specking, A ;
Truscott, KN ;
Guiard, B ;
Meisinger, C ;
Pfanner, N .
EMBO JOURNAL, 2004, 23 (19) :3735-3746
[5]   Oxidative protein folding in bacteria [J].
Collet, JF ;
Bardwell, JCA .
MOLECULAR MICROBIOLOGY, 2002, 44 (01) :1-8
[6]   Multidomain flavin-dependent sulfhydryl oxidases [J].
Coppock, Donald L. ;
Thorpe, Colin .
ANTIOXIDANTS & REDOX SIGNALING, 2006, 8 (3-4) :300-311
[7]   The role of Hot13p and redox chemistry in the mitochondrial TIM22 import pathway [J].
Curran, SP ;
Leuenberger, D ;
Leverich, EP ;
Hwang, DK ;
Beverly, KN ;
Koehler, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (42) :43744-43751
[8]   The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier [J].
Curran, SP ;
Leuenberger, D ;
Oppliger, W ;
Koehler, CM .
EMBO JOURNAL, 2002, 21 (05) :942-953
[9]   Evolution of the molecular machines for protein import into mitochondria [J].
Dolezal, Pavel ;
Likic, Vladimir ;
Tachezy, Jan ;
Lithgow, Trevor .
SCIENCE, 2006, 313 (5785) :314-318
[10]   Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles [J].
Endo, T ;
Yamamoto, H ;
Esaki, M .
JOURNAL OF CELL SCIENCE, 2003, 116 (16) :3259-3267