Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model

被引:49
作者
Hobert, JP [1 ]
机构
[1] Univ Florida, Gainesville, FL 32611 USA
[2] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
Bayesian model; central limit theorem; drift condition; Markov chain; Monte Carlo; rate of convergence; variance components;
D O I
10.1006/jmva.1998.1778
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider fixed scan Gibbs and block Gibbs samplers for a Bayesian hierarchical random effects model with proper conjugate priors. A drift condition given in Meyn and Tweedie (1993, Chapter 15) is used to show that these Markov chains are geometrically ergodic. Showing that a Gibbs sampler is geometrically ergodic is the first step toward establishing central limit theorems, which can be used to approximate the error associated with Monte Carlo estimates of posterior quantities of interest. Thus, our results will be of practical interest to researchers using these Gibbs samplers for Bayesian data analysis. (C) 1998 Academic Press.
引用
收藏
页码:414 / 430
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[2]  
CHAN KS, 1994, ANN STAT, V22, P1747, DOI 10.1214/aos/1176325754
[3]   ASYMPTOTIC-BEHAVIOR OF THE GIBBS SAMPLER [J].
CHAN, KS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :320-326
[4]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[5]   The effect of improper priors on Gibbs sampling in hierarchical linear mixed models [J].
Hobert, JP ;
Casella, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1461-1473
[6]   Functional compatibility, Markov chains, and Gibbs sampling with improper posteriors [J].
Hobert, JP ;
Casella, G .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (01) :42-60
[7]   APPROXIMATE BAYESIAN-INFERENCE IN CONDITIONALLY INDEPENDENT HIERARCHICAL-MODELS (PARAMETRIC EMPIRICAL BAYES MODELS) [J].
KASS, RE ;
STEFFEY, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (407) :717-726
[8]   COVARIANCE STRUCTURE OF THE GIBBS SAMPLER WITH APPLICATIONS TO THE COMPARISONS OF ESTIMATORS AND AUGMENTATION SCHEMES [J].
LIU, JS ;
WONG, WH ;
KONG, A .
BIOMETRIKA, 1994, 81 (01) :27-40
[9]  
Mengersen KL, 1996, ANN STAT, V24, P101
[10]  
Nummelin E., 1984, Cambridge Tracts in Mathematics, DOI DOI 10.1017/CBO9780511526237