Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity

被引:81
作者
Wang, Zhiyong [1 ]
Kiesel, Elizabeth R. [1 ]
Stein, Andreas [1 ]
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
关键词
D O I
10.1039/b719489g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hierarchically ordered macroporous polymer and carbon monoliths with walls containing face-centered cubic or 2D-hexagonal mesopores were synthesized via a facile dual-templating technique using poly( methyl methacrylate) ( PMMA) colloidal crystals and amphiphilic triblock copolymer surfactants as templates. A nanocasting step using a silica mold was not required. The as-synthesized nanoporous structures contain both ordered macropores and mesopores, originating from the colloidal crystal and surfactants, respectively. The mesostructures could be conveniently controlled by tuning the concentration of the copolymer surfactant. Starting from the PMMA template, only four major processing stages ( precursor infiltration, solvent removal, thermal curing and carbonization) were involved to prepare the bimodal porous carbon materials. A two-step thermal curing method was utilized to improve the robustness of the products. On the basis of nanoindentation measurements, the carbon products were mechanically more stable than hierarchically porous carbon monoliths synthesized by nanocasting, and the product with the cubic mesopore structure was even more stable than 3D-ordered macroporous carbon lacking any templated mesopores in the wall skeleton. Compared with conventional nanocasting strategies, the current method avoids the use of hazardous hydrofluoric acid that is required to remove a silica template, and therefore the synthetic procedure is more environmentally benign.
引用
收藏
页码:2194 / 2200
页数:7
相关论文
共 33 条
[1]   LIQUID-CRYSTALLINE PHASES AS TEMPLATES FOR THE SYNTHESIS OF MESOPOROUS SILICA [J].
ATTARD, GS ;
GLYDE, JC ;
GOLTNER, CG .
NATURE, 1995, 378 (6555) :366-368
[2]   On a theory of the van der Waals adsorption of gases [J].
Brunauer, S ;
Deming, LS ;
Deming, WE ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1940, 62 :1723-1732
[3]   Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells [J].
Chai, GS ;
Shin, IS ;
Yu, JS .
ADVANCED MATERIALS, 2004, 16 (22) :2057-+
[4]   Synthesis of large-pore Ia(3)over-bard mesoporous silica and its tubelike carbon replica [J].
Che, SN ;
Garcia-Bennett, AE ;
Liu, XY ;
Hodgkins, RP ;
Wright, PA ;
Zhao, DY ;
Terasaki, O ;
Tatsumi, T .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (33) :3930-3934
[5]   Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO-PMMA diblock copolymer [J].
Deng, Yonghui ;
Liu, Chong ;
Gu, Dong ;
Yu, Ting ;
Tu, Bo ;
Zhao, Dongyuan .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (01) :91-97
[6]   Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach [J].
Deng, Yonghui ;
Liu, Chong ;
Yu, Ting ;
Liu, Feng ;
Zhang, Fuqiang ;
Wan, Ying ;
Zhang, Lijuan ;
Wang, Changchun ;
Tu, Bo ;
Webley, Paul A. ;
Wang, Huanting ;
Zhao, Dongyuan .
CHEMISTRY OF MATERIALS, 2007, 19 (13) :3271-3277
[7]   Photonic crystal structures as a basis for a three-dimensionally interpenetrating electrochemical-cell system [J].
Ergang, Nicholas S. ;
Lytle, Justin C. ;
Lee, Kyu T. ;
Oh, Seung M. ;
Smyrl, William H. ;
Stein, Andreas .
ADVANCED MATERIALS, 2006, 18 (13) :1750-+
[8]   Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J].
Holland, BT ;
Blanford, CF ;
Stein, A .
SCIENCE, 1998, 281 (5376) :538-540
[9]   Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J].
Joo, SH ;
Choi, SJ ;
Oh, I ;
Kwak, J ;
Liu, Z ;
Terasaki, O ;
Ryoo, R .
NATURE, 2001, 412 (6843) :169-172
[10]   Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J].
Jun, S ;
Joo, SH ;
Ryoo, R ;
Kruk, M ;
Jaroniec, M ;
Liu, Z ;
Ohsuna, T ;
Terasaki, O .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (43) :10712-10713