Phase field model for three-dimensional dendritic growth with fluid flow

被引:244
作者
Jeong, JH
Goldenfeld, N
Dantzig, JA
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 04期
关键词
D O I
10.1103/PhysRevE.64.041602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the effect of fluid flow on three-dimensional (3D) dendrite growth using a phase-field model on an adaptive finite-element grid. In order to simulate 3D fluid flow, we use an averaging method for the flow problem coupled to the phase-field method and the semi-implicit approximated projection method (SIAPM). We describe a parallel implementation for the algorithm, using the CHARM+ + FEM framework, and demonstrate its efficiency. We introduce an improved method for extracting dendrite tip position and tip radius, facilitating accurate comparison to theory. We benchmark our results for 2D dendrite growth with solvability theory and previous results, finding them to be in good agreement. The physics of dendritic growth with fluid flow in three dimensions is very different from that in two dimensions, and we discuss the origin of this behavior.
引用
收藏
页数:14
相关论文
共 21 条
  • [1] Modeling melt convection in phase-field simulations of solidification
    Beckermann, C
    Diepers, HJ
    Steinbach, I
    Karma, A
    Tong, X
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) : 468 - 496
  • [2] PATTERN SELECTION IN DENDRITIC SOLIDIFICATION
    BENJACOB, E
    GOLDENFELD, N
    KOTLIAR, BG
    LANGER, JS
    [J]. PHYSICAL REVIEW LETTERS, 1984, 53 (22) : 2110 - 2113
  • [3] BHANDARKAR M, UNPUB P INT C HIGH P
  • [4] INFLUENCE OF AN EXTERNAL FLOW ON DENDRITIC CRYSTAL-GROWTH
    BOUISSOU, P
    PERRIN, B
    TABELING, P
    [J]. PHYSICAL REVIEW A, 1989, 40 (01): : 509 - 512
  • [5] STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    BROOKS, AN
    HUGHES, TJR
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) : 199 - 259
  • [6] A simple level set method for solving Stefan problems
    Chen, S
    Merriman, B
    Osher, S
    Smereka, P
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (01) : 8 - 29
  • [7] DANTZIG JA, 1986, P 10 US NAT C APPL M, P249
  • [8] Davis S. H., 2001, THEORY SOLIDIFICATIO
  • [9] A LITTLE MORE ON STABILIZED Q(1)Q(1) FOR TRANSIENT VISCOUS INCOMPRESSIBLE-FLOW
    GRESHO, PM
    CHAN, ST
    CHRISTON, MA
    HINDMARSH, AC
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 21 (10) : 837 - 856
  • [10] KALE LV, 1998, PARALLEL PROGRAMMING, P175