An Einstein model of brittle crack propagation

被引:26
作者
Holian, BL
Blumenfeld, R
Gumbsch, P
机构
[1] CAMBRIDGE HYDRODYNAM,PRINCETON,NJ 08542
[2] MAX PLANCK INST MET RES,D-70174 STUTTGART,GERMANY
关键词
D O I
10.1103/PhysRevLett.78.78
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a minimal nonlinear model of brittle crack propagation by considering only the motion of the crack-tip atom. The model captures many essential features of steady-state crack velocity and is in excellent quantitative agreement with many-body dynamical simulations. The model exhibits lattice trapping. For loads just above this, the crack velocity rises sharply, reaching a limiting value well below that predicted by elastic continuum theory. We trace the origin of the low limiting velocity to the anharmonicity of the potential well experienced by the crack-tip atom.
引用
收藏
页码:78 / 81
页数:4
相关论文
共 17 条
[1]   MICROSCOPIC FRACTURE STUDIES IN 2-DIMENSIONAL TRIANGULAR LATTICE [J].
ASHURST, WT ;
HOOVER, WG .
PHYSICAL REVIEW B, 1976, 14 (04) :1465-1473
[2]   Nonequilibrium brittle fracture propagation: Steady state, oscillations, and intermittency [J].
Blumenfeld, R .
PHYSICAL REVIEW LETTERS, 1996, 76 (20) :3703-3706
[3]   Dynamic instabilities in fracture [J].
Ching, ESC ;
Langer, JS ;
Nakanishi, H .
PHYSICAL REVIEW LETTERS, 1996, 76 (07) :1087-1090
[4]   INSTABILITY IN DYNAMIC FRACTURE [J].
FINEBERG, J ;
GROSS, SP ;
MARDER, M ;
SWINNEY, HL .
PHYSICAL REVIEW LETTERS, 1991, 67 (04) :457-460
[5]  
Gumbsch P, 1996, MATER RES SOC SYMP P, V409, P297
[6]  
Gumbsch P, 1996, COMPUTER SIMULATION, P227
[7]  
GUMBSCH P, IN PRESS PHYS REV B
[8]   FRACTURE SIMULATIONS USING LARGE-SCALE MOLECULAR-DYNAMICS [J].
HOLIAN, BL ;
RAVELO, R .
PHYSICAL REVIEW B, 1995, 51 (17) :11275-11288
[9]   SOME BASIC PROBLEMS IN STRESS WAVE DOMINATED FRACTURE [J].
KNAUSS, WG ;
RAVICHANDAR, K .
INTERNATIONAL JOURNAL OF FRACTURE, 1985, 27 (3-4) :127-143
[10]  
LUND F, 1996, PHYS REV LETT, V76, P2724