On the solution of bounded and unbounded mixed complementarity problems

被引:7
作者
Andreani, R
Martínez, JM
机构
[1] Univ Estadual Campinas, Dept Appl Math, IMECC, BR-13081970 Campinas, SP, Brazil
[2] Univ Nacl Estadual Sao Paulo, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
mixed complementarity problem; variational inequalities; box constrained minimization; reformulation;
D O I
10.1080/02331930108844563
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A reformulation of the bounded mixed complementarity problem is introduced. It is proved that the level sets of the objective function are bounded and, under reasonable assumptions, stationary points coincide with solutions of the original variational inequality problem. Therefore, standard minimization algorithms applied to the new reformulation must succeed. This result is applied to the compactification of unbounded mixed complementarity problems.
引用
收藏
页码:265 / 278
页数:14
相关论文
共 25 条
[1]   The reformulation of nonlinear complementarity problems using the Fischer-Burmeister function [J].
Andreani, R ;
Martínez, JM .
APPLIED MATHEMATICS LETTERS, 1999, 12 (05) :7-12
[2]   Solution of finite-dimensional variational inequalities using smooth optimization with simple bounds [J].
Andreani, R ;
Friedlander, A ;
Martinez, JM .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (03) :635-657
[3]   On the solution of the extended linear complementarity problem [J].
Andreani, R ;
Martinez, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 281 (1-3) :247-257
[4]  
ANDREANI R, 1998, REFORMULATION NONSMO, P1
[5]  
CHEN B, 1997, INT S MATH PROGR LAU
[6]   CORRECTION [J].
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :764-767
[7]   GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION ALGORITHMS FOR OPTIMIZATION WITH SIMPLE BOUNDS [J].
CONN, AR ;
GOULD, NIM ;
TOINT, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (02) :433-460
[8]  
Cottle R, 1992, The Linear Complementarity Problem
[9]  
Dirkse S.P., 1995, Optimization Methods and Software, V5, P319, DOI DOI 10.1080/10556789508805619
[10]  
Facchinei F., 1997, COMPLEMENTARITY VARI, P76