Correlation dimension and integral do not predict epileptic seizures

被引:45
作者
Harrison, MAF
Osorio, I
Frei, MG
Asuri, S
Lai, YC
机构
[1] Flint Hills Sci LLC, Lawrence, KS 66049 USA
[2] Univ Kansas, Med Ctr, Dept Neurol, Kansas City, KS 66160 USA
[3] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[4] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
关键词
D O I
10.1063/1.1935138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Reports in the literature have indicated potential value of the correlation integral and dimension for prediction of epileptic seizures up to several minutes before electrographic onset. We apply these measures to over 2000 total hours of continuous electrocortiogram, taken from 20 patients with epilepsy, examine their sensitivity to quantifiable properties such as the signal amplitude and autocorrelation, and investigate the influence of embedding and filtering strategies on their performance. The results are compared against those obtained from surrogate time series. Our conclusion is that neither the correlation dimension nor the correlation integral has predictive power for seizures. (C) 2005 American Institute of Physics.
引用
收藏
页数:15
相关论文
共 54 条
[1]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[2]  
[Anonymous], 2012, Practical numerical algorithms for chaotic systems
[3]  
[Anonymous], 1993, Chaos in Dynamical Systems
[4]   How well can epileptic seizures be predicted? An evaluation of a nonlinear method [J].
Aschenbrenner-Scheibe, R ;
Maiwald, T ;
Winterhalder, M ;
Voss, HU ;
Timmer, J ;
Schulze-Bonhage, A .
BRAIN, 2003, 126 :2616-2626
[5]   LOW-DIMENSIONAL CHAOS IN AN INSTANCE OF EPILEPSY [J].
BABLOYANTZ, A ;
DESTEXHE, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (10) :3513-3517
[6]  
BENDAT JS, 1958, PRINCIPLES APPL RAND
[7]  
Bhattacharya J, 2001, ACTA NEUROBIOL EXP, V61, P309, DOI 10.55782/ane-2001-1406
[8]   LEVEL-CROSSING PROBLEMS FOR RANDOM PROCESSES [J].
BLAKE, IF ;
LINDSEY, WC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (03) :295-315
[9]   THE KOLMOGOROV-SMIRNOV, CRAMER-VON MISES TESTS [J].
DARLING, DA .
ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (04) :823-838
[10]   Nonlinear models for detecting epileptic spikes [J].
Diambra, L ;
Malta, CP .
PHYSICAL REVIEW E, 1999, 59 (01) :929-937