Cyclic dominance and biodiversity in well-mixed populations

被引:123
作者
Claussen, Jens Christian [1 ]
Traulsen, Arne [2 ]
机构
[1] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany
[2] Max Planck Inst Evolutionsbiol, D-24306 Plon, Germany
关键词
D O I
10.1103/PhysRevLett.100.058104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Coevolutionary dynamics is investigated in chemical catalysis, biological evolution, social and economic systems. The dynamics of these systems can be analyzed within the unifying framework of evolutionary game theory. In this Letter, we show that even in well-mixed finite populations, where the dynamics is inherently stochastic, biodiversity is possible with three cyclic-dominant strategies. We show how the interplay of evolutionary dynamics, discreteness of the population, and the nature of the interactions influences the coexistence of strategies. We calculate a critical population size above which coexistence is likely.
引用
收藏
页数:4
相关论文
共 30 条
[1]   Biodiversity in model ecosystems, I:: coexistence conditions for competing species [J].
Bastolla, U ;
Lässig, M ;
Manrubia, SC ;
Valleriani, A .
JOURNAL OF THEORETICAL BIOLOGY, 2005, 235 (04) :521-530
[2]   THE STATISTICAL-MECHANICS OF STRATEGIC INTERACTION [J].
BLUME, LE .
GAMES AND ECONOMIC BEHAVIOR, 1993, 5 (03) :387-424
[3]   Non-Gaussian fluctuations arising from finite populations: Exact results for the evolutionary Moran process [J].
Claussen, JC ;
Traulsen, A .
PHYSICAL REVIEW E, 2005, 71 (02)
[4]   Chemical warfare between microbes promotes biodiversity [J].
Czárán, TL ;
Hoekstra, RF ;
Pagie, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :786-790
[5]  
Dawkins R., 2016, SELFISH GENE
[6]   Volunteering as Red Queen mechanism for cooperation in public goods games [J].
Hauert, C ;
De Monte, S ;
Hofbauer, J ;
Sigmund, K .
SCIENCE, 2002, 296 (5570) :1129-1132
[7]   INTERRELATIONS BETWEEN STOCHASTIC-EQUATIONS FOR SYSTEMS WITH PAIR INTERACTIONS [J].
HELBING, D .
PHYSICA A, 1992, 181 (1-2) :29-52
[8]   STOCHASTIC AND BOLTZMANN-LIKE MODELS FOR BEHAVIORAL-CHANGES, AND THEIR RELATION TO GAME-THEORY [J].
HELBING, D .
PHYSICA A, 1993, 193 (02) :241-258
[9]  
Hofbauer J, 1996, J MATH BIOL, V34, P675
[10]  
Hofbauer J., 1998, Evol. Games Popul. Dyn., DOI DOI 10.1017/CBO9781139173179