The monotone convergence of the two-stage iterative method for solving large sparse systems of linear equations

被引:26
作者
Bai, ZZ [1 ]
Wang, DR [1 ]
机构
[1] SHANGHAI UNIV,DEPT MATH,SHANGHAI 201800,PEOPLES R CHINA
关键词
linear system of equations; two-stage iterative method; Monotone convergence; Monotone convergence rate;
D O I
10.1016/S0893-9659(96)00121-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper sets up the monotone convergence theory for the two-stage iterative method proposed by Frommer and Szyld in [1], and investigates the influence of the splitting matrices and the inner iteration number sequence on the monotone convergence rate of this method.
引用
收藏
页码:113 / 117
页数:5
相关论文
共 5 条
[1]   H-SPLITTINGS AND 2-STAGE ITERATIVE METHODS [J].
FROMMER, A ;
SZYLD, DB .
NUMERISCHE MATHEMATIK, 1992, 63 (03) :345-356
[2]   THE CONVERGENCE OF INEXACT TSCHEBYSCHEFF AND RICHARDSON ITERATIVE METHODS FOR SOLVING LINEAR-SYSTEMS [J].
GOLUB, GH ;
OVERTON, ML .
NUMERISCHE MATHEMATIK, 1988, 53 (05) :571-593
[3]  
LANZKRON PJ, 1991, NUMER MATH, V58, P685
[4]   CONVERGENCE OF 2-STAGE ITERATIVE PROCESSES FOR SOLVING LINEAR EQUATIONS [J].
NICHOLS, NK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (03) :460-469
[5]  
Wachspress E. L., 1966, ITERATIVE SOLUTION E