Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and α-actinin

被引:222
作者
Singleton, PA [1 ]
Dudek, SM [1 ]
Chiang, ET [1 ]
Garcia, JGN [1 ]
机构
[1] Johns Hopkins Univ, Div Pulm & Crit Care Med, Ctr Translat Resp Med, Sch Med, Baltimore, MD 21224 USA
关键词
cytoskeleton; S1P; S1P(1)/Edg1 receptor; Tiam1; PI3; kinase; alpha actinin;
D O I
10.1096/fj.05-3928com
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endothelial cell (EC) barrier dysfunction results in increased vascular permeability observed in inflammation, tumor angiogenesis, and atherosclerosis. The platelet-derived phospholipid sphingosine-1-phosphate (S1P) decreases EC permeability in vitro and in vivo and thus has obvious therapeutic potential. We examined S1P-mediated human pulmonary artery EC signaling and barrier regulation in caveolin-enriched microdomains (CEM). Immunoblotting from S1P-treated EC revealed S1P-mediated rapid recruitment ( 1 mu M, 5 min) to CEMs of the S1P receptors S1P(1) and S1P(3), p110 PI3 kinase alpha and beta catalytic subunits, the Rac1 GEF, Tiam1, and alpha-actinin isoforms 1 and 4. Immunoprecipitated p110 PI3 kinase catalytic subunits from S1P-treated EC exhibited PIP3 production in CEMs. Immunoprecipitation of S1P receptors from CEM fractions revealed complexes containing Tiam1 and S1P1. PI3 kinase inhibition (LY294002) attenuated S1P-induced Tiam1 association with S1P1, Tiaml/Rac1 activation, alpha-actinin-1/4 recruitment, and EC barrier enhancement. Silencing of either S1P1 or Tiam1 expression resulted in the loss of S1P-mediated Rac1 activation and alpha-actinin-1/4 recruitment to CEM. Finally, silencing S1P1, Tiam1, or both alpha-actinin isoforms 1/4 inhibits S1P-induced cortical F-actin rearrangement and S1P-mediated barrier enhancement. Taken together, these results suggest that S1P-induced recruitment of S1P1 to CEM fractions promotes PI3 kinase-mediated Tiam1/Rac1 activation required for alpha-actinin-1/4-regulated cortical actin rearrangement and EC barrier enhancement.
引用
收藏
页码:1646 / 1656
页数:11
相关论文
共 60 条
[1]   Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (Macrophage-Colony stimulating factor) production and breast tumor progression [J].
Bourguignon, LYW ;
Singleton, PA ;
Zhu, HB ;
Diedrich, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (32) :29420-29434
[2]   CD44 interaction with Tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration [J].
Bourguignon, LYW ;
Zhu, HB ;
Shao, LJ ;
Chen, YW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1829-1838
[3]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[4]   Rho and Rac take center stage [J].
Burridge, K ;
Wennerberg, K .
CELL, 2004, 116 (02) :167-179
[5]   Temporal and spatial modulation of Rho GTPases during in vitro formation of capillary vascular network - Adherens junctions and myosin light chain as targets of Rac1 and RhoA [J].
Cascone, I ;
Giraudo, E ;
Caccavari, F ;
Napione, L ;
Bertotti, E ;
Collard, JG ;
Serini, G ;
Bussolino, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (50) :50702-50713
[6]   Coupling membrane protrusion and cell adhesion [J].
DeMali, KA ;
Burridge, K .
JOURNAL OF CELL SCIENCE, 2003, 116 (12) :2389-2397
[7]   Structural insight into substrate specificity and regulatory mechanisms of phosphoinositide 3-kinases [J].
Djordjevic, S ;
Driscoll, PC .
TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (08) :426-432
[8]   Mechanisms and consequences of activation of protein kinase B/Akt [J].
Downward, J .
CURRENT OPINION IN CELL BIOLOGY, 1998, 10 (02) :262-267
[9]   Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice [J].
Drab, M ;
Verkade, P ;
Elger, M ;
Kasper, M ;
Lohn, M ;
Lauterbach, B ;
Menne, J ;
Lindschau, C ;
Mende, F ;
Luft, FC ;
Schedl, A ;
Haller, H ;
Kurzchalia, TV .
SCIENCE, 2001, 293 (5539) :2449-2452
[10]   Cytoskeletal regulation of pulmonary vascular permeability [J].
Dudek, SM ;
Garcia, JGN .
JOURNAL OF APPLIED PHYSIOLOGY, 2001, 91 (04) :1487-1500