The serum- and glucocorticoid-induced kinase SGK inhibits mutant huntingtin-induced toxicity by phosphorylating serine 421 of huntingtin

被引:111
作者
Rangone, H
Poizat, G
Troncoso, J
Ross, CA
MacDonald, ME
Saudou, F
Humbert, S
机构
[1] Inst Curie, UMR 146, CNRS, F-91405 Orsay, France
[2] Johns Hopkins Univ, Sch Med, Div Neuropathol, Baltimore, MD USA
[3] Johns Hopkins Univ, Sch Med, Div Neurobiol, Dept Psychiat, Baltimore, MD USA
[4] Massachusetts Gen Hosp, Mol Neurogenet Unit, Charlestown, MA USA
关键词
CAG expansion; Huntington's disease; IGF-1; neuronal death; polyglutamine disorders;
D O I
10.1111/j.0953-816X.2003.03131.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Huntington's disease (HD) is caused by abnormal polyglutamine (polyQ) expansion in the protein huntingtin. We have previously demonstrated the importance of the insulin-like growth factor I (IGF-1)/Akt pathway in HD. Indeed, upon IGF-1 activation, Akt phosphorylates polyQ-huntingtin at serine 421 and abrogates its toxicity. In addition, we have demonstrated that Akt is altered in the brain of HD patients. Here, we investigate the role of the serum- and glucocorticoid-induced kinase (SGK) in HD. We show that SGK phosphorylates huntingtin at serine 421 and that phosphorylation can protect striatal neurons against polyQ-huntingtin-induced toxicity. We find that SGK levels are increased in the brain of HD patients. Using a cellular model of HD, we demonstrate that the SGK dysregulation induced by polyQ-huntingtin occurs via the p38/MAPK pathway. Collectively, our results strongly suggest the involvement of SGK in HD and further imply that IGF-1 downstream signalling is a key transduction pathway that regulates the toxicity of huntingtin.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 50 条
[1]   Hyperosmotic stress stimulates promoter activity and regulates cellular utilization of the serum- and glucocorticoid-inducible protein kinase (Sgk) by a p38 MAPK-dependent pathway [J].
Bell, LM ;
Leong, MLL ;
Kim, B ;
Wang, E ;
Park, J ;
Hemmings, BA ;
Firestone, GL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) :25262-25272
[2]   Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a) [J].
Brunet, A ;
Park, J ;
Tran, H ;
Hu, LS ;
Hemmings, BA ;
Greenberg, ME .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) :952-965
[3]   Loss of normal huntingtin function: new developments in Huntington's disease research [J].
Cattaneo, E ;
Rigamonti, D ;
Goffredo, D ;
Zuccato, C ;
Squitieri, F ;
Sipione, S .
TRENDS IN NEUROSCIENCES, 2001, 24 (03) :182-188
[4]   Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1 [J].
Chen, HK ;
Fernandez-Funez, P ;
Acevedo, SF ;
Lam, YC ;
Kaytor, MD ;
Fernandez, MH ;
Aitken, A ;
Skoulakis, EMC ;
Orr, HT ;
Botas, J ;
Zoghbi, HY .
CELL, 2003, 113 (04) :457-468
[5]   Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery [J].
Datta, SR ;
Dudek, H ;
Tao, X ;
Masters, S ;
Fu, HA ;
Gotoh, Y ;
Greenberg, ME .
CELL, 1997, 91 (02) :231-241
[6]   Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation [J].
Davies, SW ;
Turmaine, M ;
Cozens, BA ;
DiFiglia, M ;
Sharp, AH ;
Ross, CA ;
Scherzinger, E ;
Wanker, EE ;
Mangiarini, L ;
Bates, GP .
CELL, 1997, 90 (03) :537-548
[7]   Regulation of expanded polyglutamine protein aggregation and nuclear localization by the glucocorticoid receptor [J].
Diamond, MI ;
Robinson, MR ;
Yamamoto, KR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (02) :657-661
[8]   Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain [J].
DiFiglia, M ;
Sapp, E ;
Chase, KO ;
Davies, SW ;
Bates, GP ;
Vonsattel, JP ;
Aronin, N .
SCIENCE, 1997, 277 (5334) :1990-1993
[9]   EXCITOTOXIC INJURY OF THE NEOSTRIATUM - A MODEL FOR HUNTINGTONS-DISEASE [J].
DIFIGLIA, M .
TRENDS IN NEUROSCIENCES, 1990, 13 (07) :286-289
[10]   Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice [J].
Emamian, ES ;
Kaytor, MD ;
Duvick, LA ;
Zu, T ;
Tousey, SK ;
Zoghbi, HY ;
Clark, HB ;
Orr, HT .
NEURON, 2003, 38 (03) :375-387