Fhos, a mammalian formin, directly binds to F-actin via a region N-terminal to the FH1 domain and forms a homotypic complex via the FH2 domain to promote actin fiber formation

被引:49
作者
Takeya, R [1 ]
Sumimoto, H [1 ]
机构
[1] Kyushu Univ, Med Inst Bioregulat, Higashi Ku, Fukuoka 8128582, Japan
关键词
formin proteins; Fhos; diaphanous proteins; actin; stress fiber; Rac;
D O I
10.1242/jcs.00769
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Formins constitute a family of eukaryotic proteins that are considered to function as a cytoskeleton organizer to regulate morphogenesis, cell polarity and cytokinesis. Fhos is a recently identified mammalian formin, which contains the conserved domains FH (formin homology) 1 and FH2 in the middle region and the Dia-autoregulatory domain (DAD) in the C-terminus. The role of Fhos in the regulation of cytoskeleton, however, has remained unknown. Here we show that Fhos, in an active form, induces the formation of actin stress fibers and localizes to the actin-based structure. Fhos appears to normally exist in a closed inactive form via an intramolecular interaction between the N-terminal region and the C-terminal DAD. Both FH1 and FH2 domains are required for the induction of the stress fiber formation. However, the N-terminal region of Fhos is required for the targeting of this protein to stress fibers, which is probably mediated via its F-actin-binding activity. We also show that Fhos occurs as a homotypic complex in cells. The self-association of Fhos seems to be mediated via the FH2 domain: the domains bind to each other in a direct manner. Thus, the mammalian formin Fhos, which directly binds to F-actin via the N-terminal region, forms a homotypic complex via the FH2 domain to organize actin cytoskeleton.
引用
收藏
页码:4567 / 4575
页数:9
相关论文
共 42 条
[1]  
Afshar K, 2000, DEVELOPMENT, V127, P1887
[2]   Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47 phox - Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47 phox, thereby activating the oxidase [J].
Ago, T ;
Nunoi, H ;
Ito, T ;
Sumimoto, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (47) :33644-33653
[3]   Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain [J].
Alberts, AS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (04) :2824-2830
[4]   Primer - Cellular regulation of actin network assembly [J].
Amann, KJ ;
Pollard, TD .
CURRENT BIOLOGY, 2000, 10 (20) :R728-R730
[5]   In vivo functions of actin-binding proteins [J].
Ayscough, KR .
CURRENT OPINION IN CELL BIOLOGY, 1998, 10 (01) :102-111
[6]   FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands [J].
Bedford, MT ;
Chan, DC ;
Leder, P .
EMBO JOURNAL, 1997, 16 (09) :2376-2383
[7]   ISOLATION AND SOME PROPERTIES OF MACROPHAGE ALPHA-ACTININ - EVIDENCE THAT IT IS NOT AN ACTIN GELLING PROTEIN [J].
BENNETT, JP ;
ZANER, KS ;
STOSSEL, TP .
BIOCHEMISTRY, 1984, 23 (21) :5081-5086
[8]   cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin [J].
Chang, F ;
Drubin, D ;
Nurse, P .
JOURNAL OF CELL BIOLOGY, 1997, 137 (01) :169-182
[9]   Air side performance of brazed aluminum heat exchangers [J].
Chang, YJ ;
Wang, CC .
JOURNAL OF ENHANCED HEAT TRANSFER, 1996, 3 (01) :15-28
[10]   Regulating actin-filament dynamics in vivo [J].
Chen, H ;
Bernstein, BW ;
Bamburg, JR .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (01) :19-23