Concentration polarization of interacting solute particles in cross-flow membrane filtration

被引:97
作者
Bhattacharjee, S [1 ]
Kim, AS [1 ]
Elimelech, M [1 ]
机构
[1] Yale Univ, Dept Chem Engn, New Haven, CT 06520 USA
关键词
concentration polarization; cross-flow membrane filtration; permeate flux decline; Ornstein-Zernike equation; osmotic pressure; sedimentation; diffusion;
D O I
10.1006/jcis.1998.6045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A theoretical approach for predicting the influence of interparticle interactions on concentration polarization and the ensuing permeate flux decline during cross-flow membrane filtration of charged solute particles is presented. The Ornstein-Zernike integral equation is solved using appropriate closures corresponding to hard-spherical and long-range solute-solute interactions to predict the radial distribution function of the solute particles in a concentrated solution (dispersion). Two properties of the solution, namely the osmotic pressure and the diffusion coefficient, are determined on the basis of the radial distribution function at different solute concentrations. Incorporation of the concentration dependence of these two properties in the concentration polarization model comprising the convective-diffusion equation and the osmotic-pressure governed permeate flux equation leads to the coupled prediction of the solute concentration profile and the local permeate flux. The approach leads to a direct quantitative incorporation of solute-solute interactions in the framework of a standard theory of concentration polarization. The developed model is used to study the effects of ionic strength and electrostatic potential on the variations of solute diffusivity and osmotic pressure. Finally, the combined influence of these two properties on the permeate flux decline behavior during cross-flow membrane filtration of charged solute particles is predicted.(C) 1999 Academic Press.
引用
收藏
页码:81 / 99
页数:19
相关论文
共 51 条
[1]  
Allen M. P., 1987, Computer Simulation of Liquids, DOI DOI 10.1093/OSO/9780198803195.001.0001
[2]   PARTICLE DIFFUSION AS A FUNCTION OF CONCENTRATION AND IONIC-STRENGTH [J].
ANDERSON, JL ;
RAUH, F ;
MORALES, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (05) :608-616
[3]   SEDIMENTATION IN A DILUTE DISPERSION OF SPHERES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1972, 52 (MAR28) :245-+
[4]   BROWNIAN DIFFUSION OF PARTICLES WITH HYDRODYNAMIC INTERACTION [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1976, 74 (MAR9) :1-29
[5]   A unified model for flux prediction during batch cell ultrafiltration [J].
Bhattacharjee, S ;
Sharma, A ;
Bhattacharya, PK .
JOURNAL OF MEMBRANE SCIENCE, 1996, 111 (02) :243-258
[6]   SURFACE INTERACTIONS IN OSMOTIC-PRESSURE CONTROLLED FLUX DECLINE DURING ULTRAFILTRATION [J].
BHATTACHARJEE, S ;
SHARMA, A ;
BHATTACHARYA, PK .
LANGMUIR, 1994, 10 (12) :4710-4720
[7]   MODELING OF ULTRAFILTRATION - PREDICTIONS OF CONCENTRATION POLARIZATION EFFECTS [J].
BOUCHARD, CR ;
CARREAU, PJ ;
MATSUURA, T ;
SOURIRAJAN, S .
JOURNAL OF MEMBRANE SCIENCE, 1994, 97 :215-229
[8]   Prediction of the rate of cross-flow membrane ultrafiltration: A colloidal interaction approach [J].
Bowen, WR ;
Mongruel, A ;
Williams, PM .
CHEMICAL ENGINEERING SCIENCE, 1996, 51 (18) :4321-4333
[9]   THEORETICAL DESCRIPTIONS OF MEMBRANE FILTRATION OF COLLOIDS AND FINE PARTICLES - AN ASSESSMENT AND REVIEW [J].
BOWEN, WR ;
JENNER, F .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1995, 56 :141-200
[10]   DYNAMIC ULTRAFILTRATION MODEL FOR CHARGED COLLOIDAL DISPERSIONS - A WIGNER-SEITZ CELL APPROACH [J].
BOWEN, WR ;
JENNER, F .
CHEMICAL ENGINEERING SCIENCE, 1995, 50 (11) :1707-1736