ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data

被引:494
作者
Smilde, AK
Jansen, JJ
Hoefsloot, HCJ
Lamers, RJAN
van der Greef, J
Timmerman, ME
机构
[1] Univ Amsterdam, Fac Sci, Biosyst Data Anal, NL-1018 WV Amsterdam, Netherlands
[2] TNO Qual Life, NL-3700 AJ Zeist, Netherlands
[3] Leiden Univ, Gorlaeus Labs, LACDR, Ctr Med Syst Biol, NL-2300 RA Leiden, Netherlands
[4] Univ Groningen, DPMG, Heymans Inst Psychol, NL-9712 TS Groningen, Netherlands
关键词
D O I
10.1093/bioinformatics/bti476
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Datasets resulting from metabolomics or metabolic profiling experiments are becoming increasingly complex. Such datasets may contain underlying factors, such as time (time-resolved or longitudinal measurements), doses or combinations thereof. Currently used biostatistics methods do not take the structure of such complex datasets into account. However, incorporating this structure into the data analysis is important for understanding the biological information in these datasets. Results: We describe ASCA, a new method that can deal with complex multivariate datasets containing an underlying experimental design, such as metabolomics datasets. It is a direct generalization of analysis of variance (ANOVA) for univariate data to the multivariate case. The method allows for easy interpretation of the variation induced by the different factors of the design. The method is illustrated with a dataset from a metabolornics experiment with time and dose factors.
引用
收藏
页码:3043 / 3048
页数:6
相关论文
共 38 条
[1]  
[Anonymous], 1979, Multivariate analysis
[2]   Statistical experimental design and partial least squares regression analysis of biofluid metabonomic NMR and clinical chemistry data for screening of adverse drug effects [J].
Antti, H ;
Ebbels, TMD ;
Keun, HC ;
Bollard, ME ;
Beckonert, O ;
Lindon, JC ;
Nicholson, JK ;
Holmes, E .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2004, 73 (01) :139-149
[3]   Batch statistical processing of 1H NMR-derived urinary spectral data [J].
Antti, H ;
Bollard, ME ;
Ebbels, T ;
Keun, H ;
Lindon, JC ;
Nicholson, JK ;
Holmes, E .
JOURNAL OF CHEMOMETRICS, 2002, 16 (8-10) :461-468
[4]  
BALES JR, 1984, CLIN CHEM, V30, P426
[5]  
Bendele A. M., 2001, Journal of Musculoskeletal & Neuronal Interactions, V1, P363
[6]  
Bratchell N., 1989, J CHEMOMETR, V3, P579, DOI DOI 10.1002/CEM.1180030406
[7]   SCREE TEST FOR NUMBER OF FACTORS [J].
CATTELL, RB .
MULTIVARIATE BEHAVIORAL RESEARCH, 1966, 1 (02) :245-276
[8]   Integrative biological analysis of the APOE*3-Leiden transgenic mouse [J].
Clish, CB ;
Davidov, E ;
Oresic, M ;
Plasterer, TN ;
Lavine, G ;
Londo, T ;
Meys, M ;
Snell, P ;
Stochaj, W ;
Adourian, A ;
Zhang, X ;
Morel, N ;
Neumann, E ;
Verheij, E ;
Vogels, JTWE ;
Havekes, LM ;
Afeyan, N ;
Regnier, F ;
Van Der Greef, J ;
Naylor, S .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2004, 8 (01) :3-13
[9]   Osteoarthritis [J].
Creamer, P ;
Hochberg, MC .
LANCET, 1997, 350 (9076) :503-509
[10]   Metabolomics - the link between genotypes and phenotypes [J].
Fiehn, O .
PLANT MOLECULAR BIOLOGY, 2002, 48 (1-2) :155-171