Lack of interaction between nitric oxide and the redox modulatory site of the NMDA receptor

被引:26
作者
Aizenman, E [1 ]
Potthoff, WK [1 ]
机构
[1] Univ Pittsburgh, Sch Med, Dept Neurobiol, Pittsburgh, PA 15261 USA
关键词
NMDA receptor; nitric oxide; redox modulatory site; cortical neurons; recombinant expression; patch-clamping;
D O I
10.1038/sj.bjp.0702295
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
1 The inhibitory effects of nitric oxide (NO) on N-methyl-D-aspartate (NMDA) receptor function have been proposed to be mediated Pin the interaction of this gas with a redox-sensitive thiol moiety on the receptor. Here, we evaluated this suggested mechanism by examining the actions of various NO donors on native neuronal receptors as well as in wild-type and cysteine-mutated recombinant NMDA receptors expressed in Chinese hamster ovary (CHO) cells. 2 The NO donor N-ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydraxino)ethanamine (NOC-12; 100 mu M) produced a rapid and readily reversible inhibition of whole-cell currents induced by NMDA (30 mu M) in cultured cortical neurons. The inhibition was apparent at all holding potentials, though a more pronounced block was observed at negative voltages. The effects of NOC-12 disappeared when the donor was allowed to expire. A similar receptor block was observed with another NO-releasing agent, S-nitroso-N-acetylpenicillamine (SNAP; 1 mM). 3 The blocking effects of NO released by SNAP, 3-morpholinosydnonimine (SIN-1; 1 mM), and 3-[2-hydroxy- 1-(1-methylethyl)-2-nitrosohydrazino]-1-propanamine (NOC-5; 100 mu M) on currents mediated by recombinant NR1/NR2B receptors were virtually indistinguishable from those observed on native receptors. Furthermore, mutating cysteines 744 and 798 of NR1, which constitute the principal redox modulatory site of the NR1/NR2B receptor configuration, did not affect the inhibition produced by NO. 4 The NR2A subunit may contribute its own redox-sensitive site. However, the effects of NO on NR1/NR2A receptors were very similar to those seen for all other receptor configurations evaluated. Hence, we conclude that NO does not exert its inhibition of NMDA-induced responses via a modification of any of the previously described redox-sensitive sites on the receptor.
引用
收藏
页码:296 / 300
页数:5
相关论文
共 25 条